A Collaborative Framework between a Scheduling System and a Holonic Manufacturing Execution System

  • Juan M. Novas
  • Jan Van Belle
  • Bart Saint Germain
  • Paul Valckenaers
Part of the Studies in Computational Intelligence book series (SCI, volume 472)


This paper presents developments on a collaborative framework between a centralized manufacturing scheduling system (SS) and a decentralized manufacturing execution system (MES). The paper intends to integrate such systems with the aim of reducing the existing gap between detailed manufacturing scheduling systems and lower level systems, like MESs. Moreover, the framework exploits the benefits of each specialized technology and complements their capabilities in order to collaborate at runtime. The SS is based on constraint programming (CP) technology, while the holonic MES or HMES implements the PROSA reference architecture and applies the delegate multi-agent system pattern (D-MAS). The scheduling system generates a good quality schedule, which execution is performed by the HMES. In turn, the HMES requires services from the SS in order to update the schedule. The paper also shows the impact that disruptive events have on the execution performance. Experimental results have shown a trade-off between efficiency and stability metrics.


Multi-agent systems manufacturing control manufacturing scheduling constraint satisfaction problems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Qiu, R.G., Zhou, M.: Mighty MESs; State-of-the-Art and Future Manufacturing Execution Systems. IEEE Robotics & Automation Magazine 11, 19–25, 40 (2006)Google Scholar
  2. 2.
    Valckenaers, P., Van Brussel, H.: Holonicmanufacturing execution systems. CIRP Annals - Manufacturing Technology 54, 427–432 (2005)CrossRefGoogle Scholar
  3. 3.
    Babiceanu, R.F., Chen, F.F.: Development and applications of holonic manufacturing systems: a survey. J. Intell. Manuf. 17, 111–131 (2006)CrossRefGoogle Scholar
  4. 4.
    Leitão, P., Restivo, F.: ADACOR: A holonic architecture for agile and adaptive manufacturing control. Comput. Ind. 57, 121–130 (2006)CrossRefGoogle Scholar
  5. 5.
    Leitão, P., Restivo, F.: A holonic approach to dynamic manufacturing scheduling. Robot. Cim-Int. Manuf. 24, 625–634 (2008)CrossRefGoogle Scholar
  6. 6.
    McFarlane, D.C., Bussmann, S.: Developments in Holonic Production Planning and Control. International Journal of Production Planning and Control 11, 522–536 (2000)CrossRefGoogle Scholar
  7. 7.
    Pinedo, M.: Planning and scheduling in manufacturing services. Springer Series in Operations Research (2005)Google Scholar
  8. 8.
    Euwe, M.J., Wortmann, H.: Planning systems in the next century (I). Comput. Ind. 34, 233–237 (1997)CrossRefGoogle Scholar
  9. 9.
    Henning, G.P.: Production Scheduling in the Process Industries: Current Trends, Emerging Challenges and Opportunities. In: de BritoAlves, R.M., et al. (eds.) 10th International Symposium on Process Systems Engineering: Part A, Computer Aided Chemical Engineering, vol. 27, pp. 23–28. Elsevier (2009)Google Scholar
  10. 10.
    Harjunkoski, L., Nyström, R., Horch, A.: Integration of scheduling and control-Theory or practice? Comput. Chem. Eng. 33, 1909–1918 (2008)CrossRefGoogle Scholar
  11. 11.
    Aytug, H., Lawley, M., McKay, K., Mohan, S., Uzsoy, R.: Executing production schedules in the face of uncertainties: A review and some future directions. Eur. J. Oper. Res. 161, 86–110 (2005)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Valckenaers, P., Van Brussel, H., Verstraete, P., Saint Germain, B., Hadeli, M.: Schedule execution in autonomic manufacturing execution systems. Journal of Manufacturing Systems 26, 75–84 (2007)CrossRefGoogle Scholar
  13. 13.
    Framinan, J.M., Ruiz, R.: Architecture of manufacturing scheduling systems: Literature review and an integrated proposal. Eur. J. Oper. Res. 205, 237–246 (2010)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Baptiste, P., Le Pape, C., Nuijten, W.: Constrained-Based Scheduling: Applying Constraint Programming to Scheduling Problems. Springer, New York (2005)Google Scholar
  15. 15.
    ***: ANSI/ISA-95.00.01-2000: Enterprise-Control System Integration, Part 1: Models and Terminology. American National Standards Institute (2000)Google Scholar
  16. 16.
    ***: ANSI/ISA-95.00.03-2005: Enterprise-Control System Integration, Part 3: Models of Manufacturing Operations Management. American National Standards Institute (2005)Google Scholar
  17. 17.
    Rangsaritratsamee, R., Ferrell Jr., W.G., Kurz, M.B.: Dynamic rescheduling that simultaneously considers efficiency and stability. Comput. Ind. Eng. 46, 1–15 (2004)CrossRefGoogle Scholar
  18. 18.
    Hadeli, V.P., Verstraete, P., Germain, B.S., Van Brussel, H.H.: A Study of System Nervousness in Multi-agent Manufacturing Control System. In: Brueckner, S.A., Di Marzo Serugendo, G., Hales, D., Zambonelli, F. (eds.) ESOA 2005. LNCS (LNAI), vol. 3910, pp. 232–243. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Kopanos, G.M., Capón-García, E., Espuña, A., Puigjaner, L.: Costs for Rescheduling Actions: A Critical Issue for Reducing the Gap between Scheduling Theory and Practice. Ind. Eng. Chem. Res. 47, 8785–8795 (2008)CrossRefGoogle Scholar
  20. 20.
    Novas, J.M., Henning, P.G.: Reactive scheduling framework based on domain knowledge and constraint programming. Comput. Chem. Eng. 34, 2129–2148 (2010)CrossRefGoogle Scholar
  21. 21.
    Brailsford, S.C., Potts, C.N., Smith, B.M.: Constraint satisfaction problems: Algorithms and applications. Eur. J. Oper. Res. 119, 557–581 (1999)MATHCrossRefGoogle Scholar
  22. 22.
    Zeballos, L.J., Quiroga, O.D., Henning, G.P.: A constraint programming model for the scheduling of flexible manufacturing systems with machine and tool limitations. Engineering Applications of Artificial Intelligence 23, 229–248 (2010)CrossRefGoogle Scholar
  23. 23.
    Rodriguez, J.: A constraint programming model for real-time train scheduling at junctions. Transport. Res. B-Meth. 41, 231–245 (2007)CrossRefGoogle Scholar
  24. 24.
    Maravelias, C.T., Grossmann, I.E.: A Hybrid MILP/CP Decomposition Approach for the Continuous Time Scheduling of Multipurpose Batch Plants. Comput. Chem. Eng. 28, 1921–1949 (2004)CrossRefGoogle Scholar
  25. 25.
    Bourdais, S., Galinier, P., Pesant, G.: hibiscus: A Constraint Programming Application to Staff Scheduling in Health Care. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 153–167. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  26. 26.
    Ozturk, C., Tunali, S., Hnich, B., Ornek, A.M.: Simultaneous Balancing and Scheduling of Flexible Mixed Model Assembly Lines with Sequence-Dependent Setup Times. Electronic Notes in Discrete Mathematics 36, 65–72 (2010)CrossRefGoogle Scholar
  27. 27.
    ***: IBM ILOG OPL Studio 6.3 (2010)Google Scholar
  28. 28.
    Van Brussel, H., Wyns, J., Valckenaers, P., Bongaerts, L., Peeters, P.: Reference Architecture for Holonic Manufacturing Systems: PROSA. Comput. Ind. 37, 255–274 (1998)CrossRefGoogle Scholar
  29. 29.
    Verstraete, P., Saint Germain, B., Valckenaers, P., Van Brussel, H., Hadeli, Van Belle, J.: Engineering manufacturing control systems using PROSA and delegate MAS. International Journal of Agent-Oriented Software Engineering 2, 62–89 (2008)CrossRefGoogle Scholar
  30. 30.
    Holvoet, T., Weyns, D., Valckenaers, P.: Patterns of Delegate MAS. In: Proceedings of the 3rd IEEE International Conference on Self-Adaptive and Self-Organizing Systems (SASO 2009), pp. 1–9. IEEE Computer Society, Los Alamitos (2009)CrossRefGoogle Scholar
  31. 31.
    Verstraete, P., Valckenaers, P., Van Brussel, H., Saint Germain, B., Hadeli, Van Belle, J.: Towards robust and efficient planning execution. Engineering Applications of Artificial Intelligence 21, 304–314 (2008)CrossRefGoogle Scholar
  32. 32.
    Zeballos, L.J., Novas, J.M., Henning, P.G.: A CP formulation for scheduling multiproduct multistage batch plants. Comput. Chem. Eng. 35, 2973–2989 (2011)CrossRefGoogle Scholar
  33. 33.
    Novas, J.M., Henning, P.G.: A comprehensive constraint programming approach for the rolling horizon-based scheduling of automated wet-etch stations. Comput. Chem. Eng. 42, 189–205 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Juan M. Novas
    • 1
  • Jan Van Belle
    • 2
  • Bart Saint Germain
    • 2
  • Paul Valckenaers
    • 2
  1. 1.INTEC (UNL-CONICET)Santa FeArgentina
  2. 2.Department of Mechanical EngineeringKU LeuvenHeverleeBelgium

Personalised recommendations