On Structural Parameterizations for the 2-Club Problem

  • Sepp Hartung
  • Christian Komusiewicz
  • André Nichterlein
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7741)


The NP-hard 2-Club problem is, given an undirected graph G = (V,E) and a positive integer ℓ, to decide whether there is a vertex set of size at least ℓ that induces a subgraph of diameter at most two. We make progress towards a systematic classification of the complexity of 2-Club with respect to structural parameterizations of the input graph. Specifically, we show NP-hardness of 2-Club on graphs that become bipartite by deleting one vertex, on graphs that can be covered by three cliques, and on graphs with domination number two and diameter three. Moreover, we present an algorithm that solves 2-Club in |V| f(k) time, where k is the so-called h-index of the input graph. By showing W[1]-hardness for this parameter, we provide evidence that the above algorithm cannot be improved to a fixed-parameter algorithm. This also implies W[1]-hardness with respect to the degeneracy of the input graph. Finally, we show that 2-Club is fixed-parameter tractable with respect to “distance to co-cluster graphs” and “distance to cluster graphs”.


Bipartite Graph Undirected Graph Vertex Cover Interval Graph Input Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alba, R.: A graph-theoretic definition of a sociometric clique. J. Math. Sociol. 3(1), 113–126 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Asahiro, Y., Miyano, E., Samizo, K.: Approximating Maximum Diameter-Bounded Subgraphs. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 615–626. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Balasundaram, B., Butenko, S., Trukhanovzu, S.: Novel approaches for analyzing biological networks. J. Comb. Optim. 10(1), 23–39 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Barabási, A., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509 (1999)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels. J. Comput. System Sci. 75(8), 423–434 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Bourjolly, J.-M., Laporte, G., Pesant, G.: An exact algorithm for the maximum k-club problem in an undirected graph. European J. Oper. Res. 138(1), 21–28 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Chang, M.S., Hung, L.J., Lin, C.R., Su, P.C.: Finding large k-clubs in undirected graphs. In: Proc. 28th Workshop on Combinatorial Mathematics and Computation Theory (2011)Google Scholar
  8. 8.
    Chen, J., Chor, B., Fellows, M., Huang, X., Juedes, D.W., Kanj, I.A., Xia, G.: Tight lower bounds for certain parameterized NP-hard problems. Inf. Comput. 201(2), 216–231 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (1999)Google Scholar
  10. 10.
    Eppstein, D., Spiro, E.S.: The h-Index of a Graph and Its Application to Dynamic Subgraph Statistics. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 278–289. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Fellows, M.: Towards Fully Multivariate Algorithmics: Some New Results and Directions in Parameter Ecology. In: Fiala, J., Kratochvíl, J., Miller, M. (eds.) IWOCA 2009. LNCS, vol. 5874, pp. 2–10. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Hartung, S., Komusiewicz, C., Nichterlein, A.: Parameterized Algorithmics and Computational Experiments for Finding 2-Clubs. In: Thilikos, D.M., Woeginger, G.J. (eds.) IPEC 2012. LNCS, vol. 7535, pp. 231–241. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Mahdavi, F., Balasundaram, B.: On inclusionwise maximal and maximum cardinality k-clubs in graphs. Discrete Optim. (to appear, 2012)Google Scholar
  14. 14.
    Memon, N., Larsen, H.L.: Structural Analysis and Mathematical Methods for Destabilizing Terrorist Networks Using Investigative Data Mining. In: Li, X., Zaïane, O.R., Li, Z.-h. (eds.) ADMA 2006. LNCS (LNAI), vol. 4093, pp. 1037–1048. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Mokken, R.J.: Cliques, Clubs and Clans. Quality and Quantity 13, 161–173 (1979)CrossRefGoogle Scholar
  16. 16.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press (2006)Google Scholar
  17. 17.
    Niedermeier, R.: Reflections on multivariate algorithmics and problem parameterization. In: Proc. 27th STACS. LIPIcs, vol. 5, pp. 17–32. Schloss Dagstuhl–Leibniz-Zentrum für Informatik (2010)Google Scholar
  18. 18.
    Pasupuleti, S.: Detection of Protein Complexes in Protein Interaction Networks Using n-Clubs. In: Marchiori, E., Moore, J.H. (eds.) EvoBIO 2008. LNCS, vol. 4973, pp. 153–164. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Schäfer, A., Komusiewicz, C., Moser, H., Niedermeier, R.: Parameterized computational complexity of finding small-diameter subgraphs. Optim. Lett. 6(5) (2012)Google Scholar
  20. 20.
    Schäfer, A.: Exact algorithms for s-club finding and related problems. Diploma thesis, Friedrich-Schiller-Universität Jena (2009)Google Scholar
  21. 21.
    Seidman, S.B., Foster, B.L.: A graph-theoretic generalization of the clique concept. J. Math. Sociol. 6, 139–154 (1978)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sepp Hartung
    • 1
  • Christian Komusiewicz
    • 1
  • André Nichterlein
    • 1
  1. 1.Institut für Softwaretechnik und Theoretische InformatikTU BerlinGermany

Personalised recommendations