Skip to main content

Search Results Evaluation Based on User Behavior

  • Conference paper
Trustworthy Computing and Services (ISCTCS 2012)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 320))

Included in the following conference series:

  • 3163 Accesses

Abstract

The evaluation of search results for improving the precious rank of search engines is a challenge. This paper proposes a new method of search results evaluation based on user behavior. The method includes the information extraction technology, the calculation of weight and the evaluation of results. It enhances the accuracy of corresponding answer annotation. The experimental results show that the method achieves a more precious search results rank than the way using click-through data only.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kent, A., Berry, M., Leuhrs, F.U., Perry, J.W.: Machine literature searching VIII. Operational criteria for designing information retrieval systems. American Documentation 6(2), 93–101 (1955)

    Article  Google Scholar 

  2. Oard, D.W., Kim, J.: Modeling information content using observable behavior. In: Proc. of ASIST 2001, Washington, D.C., USA, pp. 38–45 (2001)

    Google Scholar 

  3. Joachims, T., Granka, L., Pan, B., Hembrooke, H., Gay, G.: Accurately interpreting clickthrough data as implicit feedback. In: SIGIR 2005, pp. 154–161. ACM, New York (2005)

    Chapter  Google Scholar 

  4. Sharma, H.: Automated Evaluation of Search Engine Performance via Implicit User Feedback. In: SIGIR 2005, August 15-19 (2005)

    Google Scholar 

  5. Dou, Z., Song, R., Yuan, X., Wen, J.R.: Are click-through data adequate for learning web search rankings? In: CIKM 2008, New York, pp. 73–82 (2008)

    Google Scholar 

  6. Cen, R., Liu, Y., Zhang, M., Ru, L., Ma, S.: Automatic Search Engine Performance Evaluation with the Wisdom of Crowds. In: Lee, G.G., Song, D., Lin, C.-Y., Aizawa, A., Kuriyama, K., Yoshioka, M., Sakai, T. (eds.) AIRS 2009. LNCS, vol. 5839, pp. 351–362. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Goutam, R.K., Dwivedi, S.K.: Search Engines Evaluation Using Users Efforts. In: International Conference on Computer & Communication Technology, ICCCT (2011)

    Google Scholar 

  8. Joachims, T.: Large-Scale Validation and Analysis of Interleaved Search Evaluation. ACM Transactions on Information Systems 30(1), Article 6 (February 2012)

    Google Scholar 

  9. Broder, A.: A taxonomy of web search. SIGIR Forum 36(2), 3–10 (2002)

    Article  Google Scholar 

  10. Rose, D.E., Levinson, D.: Understanding user goals in web search. In: Proc. of WWW 2004, pp. 13–19. ACM, New York (2004)

    Chapter  Google Scholar 

  11. Liu, Y., Zhang, M., Ru, L., Ma, S.: Automatic Query Type Identification Based on Click Through Information. In: Ng, H.T., Leong, M.-K., Kan, M.-Y., Ji, D. (eds.) AIRS 2006. LNCS, vol. 4182, pp. 593–600. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Hassan, A., Song, Y., He, L.: A Task Level Metric for Measuring Web Search Satisfaction and its Application on Improving Relevance Estimation. In: CIKM 2011, Glasgow, Scotland, UK, October 24-28 (2011)

    Google Scholar 

  13. Ali, R., Sufyan Beg, M.M.: An overview of Web search evaluation methods. Computers and Electrical Engineering 37, 835–848 (2011)

    Article  Google Scholar 

  14. Cen, R., Liu, Y., Zhang, M., Ru, L., Ma, S.: Automatic Search Engine Performance Evaluation with the Wisdom of Crowds. In: Lee, G.G., Song, D., Lin, C.-Y., Aizawa, A., Kuriyama, K., Yoshioka, M., Sakai, T. (eds.) AIRS 2009. LNCS, vol. 5839, pp. 351–362. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yu, J., Lu, Y., Sun, S., Zhang, F. (2013). Search Results Evaluation Based on User Behavior. In: Yuan, Y., Wu, X., Lu, Y. (eds) Trustworthy Computing and Services. ISCTCS 2012. Communications in Computer and Information Science, vol 320. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35795-4_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35795-4_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35794-7

  • Online ISBN: 978-3-642-35795-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics