Skip to main content

Displacement and Strain Field Measurements from SPM Images

  • Chapter

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Rapid miniaturization of microelectronics, microtechnology, and nanotechnology products has revealed new challenges corresponding to thermo-mechanical reliability. Besides accelerated testing of products and components and numerical finite element analysis, mainly deformation measurement methods are looked for. They allow us to understand response of components to environmental and functional thermo-mechanical loading and are part of advanced reliability studies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kinoshita T (1998) Stress singularity near the crack-tip in silicon carbide: investigation by atomic force microscopy. Acta Mater 46:3963–3974

    Article  Google Scholar 

  2. Komai K, Minoshima K, Inoue S (1998) Fracture and fatigue behavior of single crystal silicon microelements and nanoscopic AFM damage evaluation. Microsys Technol 5:30–37

    Article  Google Scholar 

  3. Marieta C, del Rio M, Harismendy I, Mondragon I (2000) Effect of the cure temperature on the morphology of a cyanate ester resin modified with a thermoplastic: characterization by atomic force microscopy. Eur Polym J 36: 1445–1454

    Article  Google Scholar 

  4. Bobji MS, Bushan B (2001) Atomic force microscopic study of the microcracking of magnetic thin films under tension. Scripta Mater 44:37–42

    Article  Google Scholar 

  5. Druffner CJ, Sathish Sh (2002) Improving atomic force microscopy with the adaptation of ultrasonic force microscopy. Proc SPIE 4703:105–113

    Article  Google Scholar 

  6. Xie H, Asundi A, Boay CG, Yungguang L, Yu J, Zhaowei Z, Ngoi BKA (2002) High resolution AFM scanning Moirée method and its application to the micro-deformation in the BGA electronic package. Microelectronics Reliability 42: 1219–1227

    Article  Google Scholar 

  7. Asundi A, Huimin X, Chongxiang L, Boay CG, Eng OK (2001) Micro-Moirée methods — optical and scanning techniques. Proc SPIE 4416:54–57

    Article  Google Scholar 

  8. Asundi A, Xie H, Yu J, Zhaowei ZH (2001) Phase shifting AFM Moirée method. Proc SPIE 4448: 102–110

    Article  Google Scholar 

  9. Chasiotis I, Knauss W (2002) A new microtensile tester for the study of MEMS materials with the aid of atomic force microscopy. Experimental Mech 42:51–57

    Article  Google Scholar 

  10. Vogel D, Auersperg J, Michel B (2001) Characterization of electronic packaging materials and components by image correlation methods, advanced photonic sensors and applications II, Nov 27-30,2001, Singapore. Proc SPIE 4596:237–247

    Article  Google Scholar 

  11. Vogel D, Michel B (2001) Microcrack evaluation for electronics components by AFM nanoDAC deformation measurement. Proc IEEE-NANO 2001, Oct 28–30, 2001, Maui, Hawaii, pp 309–312

    Google Scholar 

  12. Vogel D, Keller J, Gollhardt A, Michel B (2002) Displacement and strain field measurements for nanotechnology applications. Proc 2002 2nd IEEE conference on nanotechnology, IEEENANO 2002, August 26–28, Washington DC

    Google Scholar 

  13. Post D, Han B, Ilju P (1994) High sensitivity Moirée. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  14. Sirohi RS, Chau FS (1999) Optical methods of measurement — wholefield techniques. Marcel Dekker, New York

    Google Scholar 

  15. Michel B, Kuehnert R (1996) Mikro-Moiré-Methode und MikroDAC-Verfahren anwenden. Zeit Materialprüf 38

    Google Scholar 

  16. Vogel D, Auersperg J, Schubert A, Michel B, Reichl H (1997) Deformation analysis on flip chip solder interconnects by microDAC. Proc reliability of solders and solder joints symposium at 126th TMS annual meeting&exhibition, Orlando, pp 429–438

    Google Scholar 

  17. Vogel D, Grosser V, Schubert A, Michel B (2001) MicroDAC strain measurement for electronics packaging structures. Opt Lasers Eng 36: 195–211

    Article  Google Scholar 

  18. Sutton MA, Wolters WJ, Peters WH, Ranson WF, McNeill SR (1983) Determination of displacements using an improved digital correlation method. Image Vision Comput 1:133–139

    Article  Google Scholar 

  19. Chao Y-J, Sutton MA (1993) Accurate measurement of two-and three-dimensional surface deformations for fracture specimens by computer vision. In: Epstein JS (ed) Experimental techniques in fracture. VCH, New York, pp 59–93

    Google Scholar 

  20. Sutton MA, McNeil SR, Helm JD, Boone ML (2000) Measurement of crack tip opening displacement and full-field deformations during fracture of aerospace materials using 2D and 3D image correlation methods. IUTAM symp on adv optical methods and applications in solid mechanics, pp 571–580

    Google Scholar 

  21. Davidson DL (1993) Micromechanics measurement techniques for fracture. In: Epstein JS (ed) Experimental techniques in fracture. VCH, New York, pp 41–57

    Google Scholar 

  22. Vogel D, Schubert A, Faust W, Dudek R, Michel B (1996) MicroDAC-A novel approach to measure in-situ deformation fields of microscopic scale. Proc ESREF’ 96, Enschede, pp 1939–1942

    Google Scholar 

  23. Vogel D, Simon J, Schubert A, Michel B (1998) High resolution deformation measurement on CSP and flip chip. Technical digest of the fourth VLSI packaging workshop of Japan, Kyoto, pp 84–86

    Google Scholar 

  24. Vogel D, Kaulfersch E, Simon J, Kühnert R, Schubert A, Michel B (2000) Measurement of thermally induced strains on flip chip and chip scale packages. Proc ITherm 2000, Las Vegas, USA, May 23-26, pp 232–239

    Google Scholar 

  25. Soppa E, Doumalin P, Binkele P, Wiesendanger T, Bornert B, Schmauder S (2001) Experimental and Numerical Characterization on in-plane deformation in two-phase materials. Comput Mater Sci 21:261–275

    Article  Google Scholar 

  26. Cretegny L, Saxena A (2001) AFM characterization of the evolution of surface deformation during fatigue in polycrystalline copper. Acta Mater 49:3755–3765

    Article  Google Scholar 

  27. Pinardi K, Lai Z, Vogel D, Kang YL, Liu J, Liu Sh, Haug R, Willander M (2000) Effect of bump height on the strain variation during the thermal cycling test of ACA flip-chip joints. IEEE Trans Comp Pack Techn 23:447–451

    Article  Google Scholar 

  28. Schubert A, Dudek R, Walter H, Jung E, Gollhardt A, Michel B (2001) Lead-free flip-chip solder interconnects — materials mechanics and reliability issues. Proc APACK: Int Conf on Advances in Packaging, Singapore, Dec 5-7, 2001, pp 274–287

    Google Scholar 

  29. Puigcorbé J, Vogel D, Michel B, Vilà A, Sabaté N, Gràcia I, Cané C, Morante JR (2002) AFM analysis of high temperature degradation in MEMS elements. MME’02, The 13th Micromechanics Europe Workshop, October 6-8, 2002, Sinaia, Romania

    Google Scholar 

  30. O’Neal CB, Malshe AP, Schmidt WF, Gordon MH, Reynolds RR, Brown WD, Eaton WP, Miller WM (2001) A study of the effects of packaging induced stress on the reliability of the Sandia MEMS Microengine. Proc IPACK2001: The Pacific Rim!ASME international electronic packaging technical conference and exhibition, July 8-13, 2001, Hawaii, USA

    Google Scholar 

  31. Vogel D, Chen Jian, de Wolf I (2000) Experimental validation of finite element modeling. In: Zhang GQ (ed) Benefiting from thermal and mechanical simulations in micro-electronics. Kluwer, Boston, pp 113–133

    Chapter  Google Scholar 

  32. Auersperg J, Döring R, Michel B (2002) Gains and challenges of parameterized finite element modeling of microelectronics packages. In: Michel B (ed) Micromaterials and nanomaterials, no 1, Fraunhofer IZM, Berlin, pp 26–29

    Google Scholar 

  33. Puigcorbé J, Vilà A, Cerdà J, Cirera A, Gràcia I, Cané C, Morante JR (2002) Thermo-mechanical analysis of micro-drop coated gas sensors. Sens Actuators A 97:379–385

    Article  Google Scholar 

  34. Hamerton I (1994) Chemistry and technology of cyanate ester resins. Blackie Academic and Professional, Glasgow

    Book  Google Scholar 

  35. Anderson TL (1995) Fracture mechanics. CRC Press LLC, Boca Raton

    Google Scholar 

  36. Lemaitre J, Chaboche J-L (1990) Mechanics of solid materials. Cambridge University Press

    Google Scholar 

  37. Santaoja K (1997) Thermomechanics of solid materials with application to the Gurson-Tvergaard material model. VTT Publications

    Google Scholar 

  38. Gurson AL Continuum theory of ductile rupture by void nucleation and growth: Part I — yield criteria and flow rules for porous ductile media, Trans ASME. J Eng Mat Tech 99:2–13

    Google Scholar 

  39. Lemaitre J (1996) A course on damage mechanics. Springer

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Keller, J., Vogel, D., Schubert, A., Michel, B. (2004). Displacement and Strain Field Measurements from SPM Images. In: Applied Scanning Probe Methods. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35792-3_8

Download citation

Publish with us

Policies and ethics