Skip to main content

Interfacial Force Microscopy: Selected Applications

  • Chapter
Applied Scanning Probe Methods

Part of the book series: NanoScience and Technology ((NANO))

Abstract

The interfacial force microscope (IFM) was developed in the early 1990s out of a research program aimed at fundamental studies of interfacial adhesion. The desire was to evaluate the adhesive bond and its failure involving controlled interfacial surfaces. One of the most important aspects of this interfacial control involves morphological defects, which are most easily handled by utilizing a very small surface for at least one of the interfaces, for example, by using a small probe. The atomic force microscope (AFM) had recently burst onto the scene [1,2] and, thus, all the necessary control features were already in place. The idea then was to measure the interfacial force as a function of the relative separation of the two surfaces. The behavior of this force upon approach would give a “fingerprint” of the bonding (e.g., van der Waals, electrostatic, covalent, etc.) and the withdrawal would give information on the bond failure, providing a detailed measure of the interfacial bonding process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Binnig G, Quate CF, Gerber C (1986) Phys Rev Lett 56:930

    Article  Google Scholar 

  2. Martin Y, Williams CC, Wickramasinghe HK (1987) J Appl Phys 61:4723

    Article  Google Scholar 

  3. Joyce SA, Houston JE (1991) Rev Sci Instrum 62:710

    Article  Google Scholar 

  4. Bosch R (1996) Method for anisotropically etching silicon. Patent No 5501893

    Google Scholar 

  5. Rogers T, Kowal J (1995) Sens Actuators A 46:113

    Article  Google Scholar 

  6. Burnham NA, Colton RJ, Pollock HM (1993) Nanotechnology 4:64

    Article  Google Scholar 

  7. Weis P (1962) Adhesion and cohesion. Academic Press, London

    Google Scholar 

  8. Nuzzo RG, Allara DL (1983) J Am Chem Soc 105:4481

    Article  Google Scholar 

  9. Bain CD, Troughton EB, Tao Y-T, Evall J, Whitesides GM, Nuzzo RG (1989) J Am Chem Soc 111:321

    Article  Google Scholar 

  10. Joyce SA, Thomas RC, Houston JE, Michalske TA, Crooks RM (1992) Phys Rev Lett 68:2790

    Article  Google Scholar 

  11. Israelachvili J (1992) Intermolecular & Surface Forces. Academic Press, New York

    Google Scholar 

  12. Colton RJ, Barger WR, Baselt DR, Corcoran SG, Koleske DD, Lee GU (1998) In: Van Ooij WL, Anderson HR Jr (eds) Mittal Festschrift, p 21

    Google Scholar 

  13. Thomas RC, Houston JE, Crooks RM, Kim T, Michalske TA (1995) J Am Chem Soc 117:3830

    Article  Google Scholar 

  14. Johnson KL, Kendall K, Roberts AD (1971) Proc Royal Soc London A324:301

    Article  Google Scholar 

  15. Hertz H (1882) J Reine Angew Math 92:156

    Google Scholar 

  16. Derjaguin BY, Muller VM, Toporov YP (1975) J Colloid Interface Sci 53:314

    Article  Google Scholar 

  17. Strong L, Whitesides GM (1988) Langmuir 4:546

    Article  Google Scholar 

  18. Fowkes FM (1962) J Phys Chem 66:682

    Google Scholar 

  19. Pimentel GC, McClellan AL (1960) The hydrogen bond. Freeman, San Francisco

    Google Scholar 

  20. Ebeltoft H, Sjoblom J, Saeten JO, Olofsson B (1994) Langmuir 100:2262

    Article  Google Scholar 

  21. Israelachvili JN (1992) J Vacuum Sci Technol B10:2961

    Article  Google Scholar 

  22. Zisman WA, Fox HWJ (1952) J Colloid Sci 7:428

    Article  Google Scholar 

  23. Good RJ (1993) J Adhesion Sci Technol 7:1015

    Google Scholar 

  24. Kim HI, Houston JE (2000) J Am Chem Soc 122:12045

    Article  Google Scholar 

  25. Son K-A, Oliver AC, Houston JE, unpublished results

    Google Scholar 

  26. Yamada R, Uosaki K (2000) J Phys Chem B104:6021

    Article  Google Scholar 

  27. Marchenko A, Xie ZX, Cousty J, Van LP (2000) Surf Interface Anal 30:167

    Article  Google Scholar 

  28. Marchenko A, Lukyanets S, Cousty J (2002) Phys Rev B65:045414

    Article  Google Scholar 

  29. Nuzzo RG, Dubois LH, Allara DL (1990) J Am Chem Soc 112:558

    Article  Google Scholar 

  30. Houston JE, Peden CHF, Blair DS, Goodman DW (1986) Surf Sci 167:427

    Article  Google Scholar 

  31. Cabibil H, Houston JE, unpublished results

    Google Scholar 

  32. Pascual JI, Mendez J, Gomez-Herrero J, Baro AM, Garcia N, Landman U, Luedtke WD, Bogachek EN, Cheng HP (1995) Science 267:1793

    Article  Google Scholar 

  33. Gane N, Bowden FP (1968) J Appl Phys 39:1432

    Article  Google Scholar 

  34. Gane N (1970) Proc Royal Soc London A317:367

    Article  Google Scholar 

  35. Hirth JP, Lothe J (1982) Theory of dislocations. Wiley, New York

    Google Scholar 

  36. Brenner SS (1958) Growth and perfection of crystals. Wiley, New York

    Google Scholar 

  37. Kiely JD, Houston JE (1998) Phys Rev B57:12588

    Article  Google Scholar 

  38. Kiely JD, Jarausch KF, Houston JE, Russell PE (1999) J Mater Res 14:2219

    Article  Google Scholar 

  39. Michalske TA, Houston JE (1998) Acta Mater 46:391

    Article  Google Scholar 

  40. Tangyunyong P, Thomas RC, Houston JE, Michalske TA, Crooks RM, Howard AJ (1993) Phys Rev Lett 71:3319

    Article  Google Scholar 

  41. Tangyunyong P, Thomas RC, Houston JE, Michalske TA, Crooks RM, Howard AJ (1994) J Adhesion Sci Techno l8:897

    Article  Google Scholar 

  42. Thomas RC, Houston JE, Michalske TA, Crooks RM (1993) Science 259:1883

    Article  Google Scholar 

  43. Kelchner CL, Plimpton SJ, Hamilton JC (1998) Phys Rev B 58:11085

    Article  Google Scholar 

  44. Kiely JD, Hwang RQ, Houston JE (1998) Phys Rev Lett 81:4424

    Article  Google Scholar 

  45. Mitchell TE (1964) Prog Appl Mat Res 6:117

    Google Scholar 

  46. Corcoran SG, Colton RJ, Lilleodden ET, Gerberich WW (1997) Phys Rev B55:16057

    Article  Google Scholar 

  47. Hsu T, Cowley JM (1983) Ultramicroscopy 11:239

    Article  Google Scholar 

  48. Schneir J, Sonnenfeld R, Marti O, Hansma PK, Demuth JE, Hamers RJ (1988) J Appl Phys 63:717

    Article  Google Scholar 

  49. Woirgard J, Tromas C, Audurier V, Girard JC (1998) Mat Res Soc Symp Proc 522:65

    Article  Google Scholar 

  50. Rice JR (1992) J Mech Phys Solids 40:239

    Article  Google Scholar 

  51. Hurtado JA, Kim KS (1999) Proc Royal Soc London Ser A Math Phys Eng Sci 455:3363

    Article  Google Scholar 

  52. Hurtado JA, Kim KS (1999) Proc Royal Soc London Ser A Math Phys Eng Sci 455:3385

    Article  Google Scholar 

  53. Bahr DF, Gerberich WW (1996) Metall Mater Trans A27A:3793

    Article  Google Scholar 

  54. Hirth JP (1963) The relation between the structure and mechanical properties of metals. Her Majesty’s Stationary Office, London

    Google Scholar 

  55. Zimmerman JA, Kelchner CL, Klein PA, Hamilton JC, Foiles SM (2001) Phys Rev Lett 87:165507

    Article  Google Scholar 

  56. Russell PE, Stark TJ, Griffis DP, Phillips JR, Jarausch KF (1998) J Vacuum Sci Technol B16:2494

    Article  Google Scholar 

  57. Jarausch KF (1999) Nanomechanics of thin films and surfaces. North Carolina State University

    Google Scholar 

  58. Phillips GN, Siekman M, Abelmann L, Lodder JC (2002) Appl Phys Lett 81:865

    Article  Google Scholar 

  59. Maboudian R (1998) Surface Sci Reports 30:207

    Article  Google Scholar 

  60. Persson BNJ (1998) Sliding friction. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  61. Heuberger M, Luengo G, Israelachvili IN (1999) J Phys Chem B103:10127

    Article  Google Scholar 

  62. Luengo G, Campbell SE, Srdanov VI, Wudl F, Israelachvili IN (1997) Chem Mater 9:1166

    Article  Google Scholar 

  63. Israelachvili IN, Chen YL, Yoshizawa H (1994) J Adhesion Sci Techno 18:1231

    Article  Google Scholar 

  64. Berman AD, Ducker WA, Israelachvili JN (1996) Langmuir 12:4559

    Article  Google Scholar 

  65. Tsukruk VV, Bliznyuk VN (1998) Langmuir 14:446

    Article  Google Scholar 

  66. Noy A, Vezenov DV, Lieber CM (1997) Ann Rev Mater Sci 27:381

    Article  Google Scholar 

  67. Tsukruk VV (2001) Adv Mater 13:95

    Article  Google Scholar 

  68. Graupe M, Koini T, Kim HI, Garg N, Miura YF, Takenaga M, Perry SS, Lee TR (1999) Mater Res Bull 34:447

    Article  Google Scholar 

  69. Demir U, Shannon C (1994) Langmuir 10:2794

    Article  Google Scholar 

  70. Carpick RW, Agrait N, Ogletree DF, Salmeron M (1996) J Vacuum Sci Technol B14:1289

    Article  Google Scholar 

  71. Carpick RW, Agrait N, Ogletree DF, Salmeron M (1996) Langmuir 12:3334

    Article  Google Scholar 

  72. Carpick RW, Ogletree DF, Salmeron M (1997) Appl Phys Lett 70:1548

    Article  Google Scholar 

  73. Carpick RW, Ogletree DF, Salmeron M (1999) J Colloid Interface Sci 211:395

    Article  Google Scholar 

  74. Houston JE, Kim HI (2002) Ace Chem Res 35:547

    Article  Google Scholar 

  75. Hertzberg RW(1989) Deformation and fracture mechanics of engineering materials. Wiley, New York

    Google Scholar 

  76. Sun L, Kepley LJ, Crooks RM (1992) Langmuir 8:2101

    Article  Google Scholar 

  77. Leo A, Charych DH, Salmeron M (1997) J Phys Chem B10l:3800

    Article  Google Scholar 

  78. Xiao X, Hu J, Charych DH, Salmeron M (1996) Langmuir 12:235

    Article  Google Scholar 

  79. Kiely JD, Houston JE (1999) Langmuir 15:4513

    Article  Google Scholar 

  80. Tupper KJ, Brenner DW (1994) Langmuir 10:2335

    Article  Google Scholar 

  81. Tupper KJ, Brenner DW (1994) Thin Solid Films 253:185

    Article  Google Scholar 

  82. Tupper KJ, Colton RJ, Brenner DW (1994) Langmuir 10:2041

    Article  Google Scholar 

  83. Kim HI, Kushmerick JG, Houston JE, Bunker BC (2003) Langmuir (in press)

    Google Scholar 

  84. Oliver AC, Houston JE, unpublished results

    Google Scholar 

  85. Cabibil H, Celio H, Lozano J, White JM, Winter R (2001) Langmuir 17:2160

    Article  Google Scholar 

  86. Son KA, Kim HI, Houston JE (2001) Phys Rev Lett 86:5357

    Article  Google Scholar 

  87. Kim HI, Boiadjiev V, Houston JE, Zhu XV, Kiely JD (2001) Tribol Lett 10:97

    Article  Google Scholar 

  88. Zhu XV, Houston JE (1999) Tribol Lett 7:87

    Article  Google Scholar 

  89. Graham JF, McCague C, Warren OL, Norton PR (2000) Polymer 41:4761

    Article  Google Scholar 

  90. Cabibil H, Houston JE, Mayer TM, Franklin GF (1998) Mat Res Soc Symp Proc 522:463

    Article  Google Scholar 

  91. Mayer TM, Houston JE, Franklin GE, Erchak AA, Michalske TA (1999) J Appl Phys 85:8170

    Article  Google Scholar 

  92. Graham JF, McCague C, Norton PR (1999) Tribol Lett 6:149

    Article  Google Scholar 

  93. Winter RM, Houston JE (1998) Proceedings of the SEM Spring Conference on Experimental and Applied Mechanics, p 355

    Google Scholar 

  94. Graham JF, Kovar M, Norton PR, Pappalardo P, VanLoon J, Warren OL (1998) J Mater Res 13:3565

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Houston, J.E. (2004). Interfacial Force Microscopy: Selected Applications. In: Applied Scanning Probe Methods. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35792-3_2

Download citation

Publish with us

Policies and ethics