Skip to main content

Micro-Nano Scale Thermal Imaging Using Scanning Probe Microscopy

  • Chapter
Applied Scanning Probe Methods

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Thermal transport in nanometer scale devices and structures has become an area of active research. A representative example of the nano devices and structures is the metal-oxide field effect transistors (MOSFETs), which have been the driving force of the semiconductor industry for the past two decades. The gate length of the MOSFET has been continuously reduced in order to achieve higher switching speed and lower manufacturing cost. This critical length has been shrunk to 85–90 run by 2002 and will approach 20–22 nm in 2013 [1]. These lengths are comparable to the scattering mean free paths of electrons and phonons. As a result, nanotransistors exhibit unique electron and phonon transport phenomena that have not been observed in macroscopic devices. Furthermore, as nanotransistors are miniaturized, the power density is increased, leading to localized self-heating and high operating temperatures that can reduce device speed and time to failure. Therefore, it is of both scientific and technological importance to study thermal transport in the nanoscale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dekker C (1999) Physics Today 52:22

    Article  Google Scholar 

  2. Huang MH, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P (2001) Science 292:1897

    Article  Google Scholar 

  3. Hicks LD, Dresselhaus MS (1993) Phys Rev B 47:12727

    Article  Google Scholar 

  4. Heremans JP, Thrush CM, Morelli DT, Wu MC (2002) Phys Rev Lett 88:216801

    Article  Google Scholar 

  5. Majumdar (1999) Annu Rev Mater Sci 29:505

    Article  Google Scholar 

  6. Williams CC, Wickramashinghe HK (1986) Appl Phys Lett 49:1587

    Article  Google Scholar 

  7. Majumdar A, Carrejo JP, Lai J (1993) Appl Phys Lett 62:2501

    Article  Google Scholar 

  8. Lai J, Chandracood M, Majumdar A, Carrejo JP (1995) IEEE Electron Device Lett 16:312

    Article  Google Scholar 

  9. Nakabeppu O, Igeta M, Hijikata K (1997) Microscale Thermophys Eng 1:201

    Article  Google Scholar 

  10. Fish G, Bouevitch O, Kokotov S, Lieberman K (1995) Rev Sci Instrum 66:3300

    Article  Google Scholar 

  11. Luo K, Shi Z, Lai J, Majumdar A (1996) Appl Phys Lett 68:325

    Article  Google Scholar 

  12. Luo K, Shi Z, Varesi J, Majumdar A (1997) J Vac Sci Technol B 15:349

    Article  Google Scholar 

  13. Luo K, Lederman M, Majumdar A (1997) Microscale Thermophys Eng 1:333

    Article  Google Scholar 

  14. Mills G, Zhou H, Midha A, Donaldson L, Weaver JMR (1998) Appl Phys Lett 72:2900

    Article  Google Scholar 

  15. Zhou H, Midha A, Mills G, Thoms S, Murad SK, Weaver JMR (1998) J Vac Sci Technol B 16:54

    Article  Google Scholar 

  16. Shi L, Kwon O, Miner A, Majumdar A (2001) J Microelectromechanical Sys 10:370

    Article  Google Scholar 

  17. Shi L, Majumdar A (2002) J Heat Transfer 124:329

    Article  Google Scholar 

  18. Shi L, Plyasunov S, Bachtold A, McEuen PL, Majumdar A (2000) Appl Phys Lett 77:4295

    Article  Google Scholar 

  19. Shi L, Kwon O, Wu G, Majumdar A (2000) 2000 IEEE international reliability physics symposium, p 394

    Google Scholar 

  20. Kwon O (2000) Thermal design, fabrication, and imaging of MEMS and microelectronic structures. PhD dissertation, University of California at Berkeley

    Google Scholar 

  21. Leinhos T, Stopka M, Oesterschulze E (1998) Appl Phys A 66:S65

    Article  Google Scholar 

  22. Pylkki RJ, Moyer PJ, West PE (1994) Jpn J Appl Phys 33:3785

    Article  Google Scholar 

  23. Nakabeppu O, Igeta M, Inoue T (1999) Thermal Sci Eng 7:1

    Google Scholar 

  24. Williamson M, Majumdar A (1992) J Heat Transfer 114:802

    Article  Google Scholar 

  25. Johnson KL (1985) Contact mechanics. Cambridge University Press, New York

    Book  Google Scholar 

  26. Roark RJ, Young WC (1989) Roark’s formulas for stress and strain. McGraw-Hill, New York

    Google Scholar 

  27. Langer G, Hartmann J, Reichling M (1997) Rev Sci Instrum 68:1510

    Article  Google Scholar 

  28. Hammiche A, Pollock HM, Song M, Hourston DJ. Meas. Sci. Technol. 7:142

    Google Scholar 

  29. Hammiche A, Hourston DJ, Pollock HM, Reading M, Song M (1996) J Vac Sci Technol B 14:1486

    Article  Google Scholar 

  30. Hammiche A, Reading M, Pollock HM, Song M, Hourston DJ (1996) Rev Sci Instrum 67:4268

    Article  Google Scholar 

  31. Maywald M, Pylkki RJ, Balk LJ (1994) Scanning Microsc 8:181

    Google Scholar 

  32. Maywald M, Pylkki RJ, Reineke FJ, Balk LJ (1996) Prog Nat Sci 6:S103

    Google Scholar 

  33. Tsukruk VV, Gorbunov VV, Fuchigami N (2003) Thermochimica Acta 395:151

    Article  Google Scholar 

  34. Incropera FP, DeWitt DP (1990) Fundamentals of heat and mass transfer, 3rd edn. Wiley, New York

    Google Scholar 

  35. Weaver JMR, Walpita LM, Wickramasinghe HK (1989) Nature 342:783

    Article  Google Scholar 

  36. Nonnenmacher M, Wickramasinghe HK (1992) Appl Phys Lett 61:168

    Article  Google Scholar 

  37. Zhou J, Yu C, Hao Q, Kim D, Shi L (2002) Proc. 2002 Int Mech Eng Congress Exp HT-32112

    Google Scholar 

  38. Gimzewski JK, Gerber C, Meyer E, Schlittler RR (1994) Chem Phys Lett 217:589

    Article  Google Scholar 

  39. Nakabeppu O, Chandrachood M, Wu Y, Lai L, Majumdar A (1995) Appl Phys Lett 66:694

    Article  Google Scholar 

  40. Varesi J, Majumdar A (1998) Appl Phys Lett 72:37

    Article  Google Scholar 

  41. Majumdar A, Varesi J (1998) J Heat Transfer 120:297

    Article  Google Scholar 

  42. Igeta M, Banerjee K, Wu G, Hu C, Majumdar A (2000) Electron Device Lett 21:224

    Article  Google Scholar 

  43. Hammiche A, Price DM, Dupas E, Mills G, Kulik A, Reading M, Weaver JMR, Pollock HM (2000) J Microscopy 199:180

    Article  Google Scholar 

  44. Goodson KE, Asheghi M (1997) Microscale Thermophys Eng 1:225

    Article  Google Scholar 

  45. Fletcher DA, Crozier KB, Quate CF, Kino GS, Goodson KE, Simanovskii D, Palanker DV (2000) Appl Phys Lett 77:2109

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shi, L., Majumdar, A. (2004). Micro-Nano Scale Thermal Imaging Using Scanning Probe Microscopy. In: Applied Scanning Probe Methods. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35792-3_11

Download citation

Publish with us

Policies and ethics