Skip to main content

Part of the book series: NanoScience and Technology ((NANO))

Abstract

This chapter is an introduction to the concept of the dynamic mode of the atomic force microscope (AFM). While the first part is dedicated towards a systematic discussion of the different operational modes in dynamic AFM, some practical issues for the experimentalist are pointed out. Special care is taken to explain the quantitative relation of the experimental parameters with the physical magnitudes, like force and dissipation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lantz MA, Hug HJ, Hoffmann R, van Schendel PJA, Kappenberger P, Martin S, Baratoff A, Güntherodt H-J (2001) Quantitative measurement of short-range chemical bonding forces. Science 291:2580–2583

    Article  Google Scholar 

  2. Binnig G, Quate CF, Gerber CH (1986) Atomic force microscope. Phys Rev Lett 56:930–933

    Article  Google Scholar 

  3. Marti O (1999) AFM instrumentation and tips. In: Bushan B (ed) Handbook of micro/nanotribology, 2nd edn, CRC Press, pp 81–144

    Google Scholar 

  4. Cross G, Schirmeisen A, Stalder A, Grütter P, Tschudy M, Dürig U (1998) Adhesion interaction between atoically defined tip and sample. Phys Rev Lett 80:4685–4688

    Article  Google Scholar 

  5. Schirmeisen A, Cross G, Stalder A, Grütter P, Dürig U (2000) Metallic adhesion and tunneling at the atomic scale. New J Phys 2:29.1–29.10

    Article  Google Scholar 

  6. Schirmeisen A (1999) Metallic adhesion and tunneling at the atomic scale. PhD thesis, McGill University, Montréal, Canada, pp 29–38

    Google Scholar 

  7. Giessibl FJ (1997) Forces and frequency shifts in atomic-resolution dynamic-force microscopy. Phys Rev B 56: 16010–16015

    Article  Google Scholar 

  8. Giessibl FJ (1995) Atomic resolution of the silicon (111)−(7 × 7) surface by atomic force microscopy. Science 267:68–71

    Article  Google Scholar 

  9. Bezanilaa M, Drake B, Nudler E, Kashlev M, Hansma PK, Hansma HG (1994) Motion and enzymatic degradation of dna in the atomic force microscope. Biophys J 67:2454–2459

    Article  Google Scholar 

  10. Jiao Y, Cherny DI, Heim G, Jovin TM, Schäffer TF (2001) Dynamic interactions of p53 with DNA in solution by time-lapse atomic force microscopy. J Mol Biol 314:233–243

    Article  Google Scholar 

  11. Albrecht TR, Grütter P, Horne D, Rugar D (1991) Frequency modulation detection using high-Q cantilevers for enhanced force microscopy sensitivity. J Appl Phys 69:668–673

    Article  Google Scholar 

  12. Hoffmann PM, Jeffery S, Pethica JB, Özer HÖ, Oral A (2001) Energy dissipation in atomic force microscopy and atomic loss processes. Phys Rev Lett 87:265502–265505

    Article  Google Scholar 

  13. Jarvis SP, Lantz MA, Dürig U, Tokumoto H (1999) Off resonance AC mode force spectroscopy and imaging with an atomic force microscope. Appl Surf Sci 140:309–313

    Article  Google Scholar 

  14. Anczykowski B, Krüger D, Fuchs H (1996) Cantilever dynamics in quasinoncontact force microscopy: spectroscopic aspects. Phys Rev B 53:15485–15488

    Article  Google Scholar 

  15. Anczykowski B, Krüger D, Babcock KL, Fuchs H (1996) Basic properties of dynamic force spectroscopy with the scanning force microscope in experiment and simulation. Ultramicroscopy 66:251–259

    Article  Google Scholar 

  16. Hughes BD, White LR (1979) ’soft’ contact problems in linear elasticity. Quart J Mech Appl Math 32:445–471

    Article  Google Scholar 

  17. Muller VM, Yushchenko VS, Derjaguin BV (1980) On the influence of molecular forces on the deformation of an elastic sphere and its sticking to a rigid plane. J Coll Interf Sci 77:91–101

    Article  Google Scholar 

  18. Verlet L (1967) Computer “experiments” on classical fluids I: thermodynamical properties of Lennard-Jones molecules. Phys Rev 159:98–103; Verlet L (1968) Computer “experiments” on classical fluids II: equilibrium correlation functions. Phys Rev 165:201–214

    Article  Google Scholar 

  19. Uchihasi T, Ishida T, Komiyama M, Ashino M, Sugawara Y, Mizutani W, Yokoyama K, Morita S, Tokumoto H, Ishikawa M (2000) High-resolution imaging of organic mono layers using noncontact AFM. Appl Surf Sci 157:244–250

    Article  Google Scholar 

  20. Gleyzes P, Kuo PK, Boccara AC (1991) Bistable behavior of a vibrating tip near a solid surface. Appl Phys Lett 58:2989–2991

    Article  Google Scholar 

  21. San Paulo A, Garcia R (2000) High-resolution imaging of antibodies by tapping-mode atomic force microscopy: attractive and repulsive tip-sample interaction regimes. Biophys J 78: 1599–1605

    Article  Google Scholar 

  22. Krüger D, Anczykowski B, Fuchs H (1997) Physical properties of dynamic force microscopies in contact and noncontact operation. Ann Phys 6:341–363

    Article  Google Scholar 

  23. Martin Y, Williams CC, Wickramasinghe HK (1987) Atomic force microscope force mapping and profiling on a sub 100-A scale. J Appl Phys 61:4723–4729

    Article  Google Scholar 

  24. Barth C, Reichling M (2001) Imaging the atomic arrangement on the high-temperature reconstructed α-Al2O3(0001) surface. Nature 414:54–57

    Article  Google Scholar 

  25. Gotsmann B, Fuchs H (2001) Dynamic force spectroscopy of conservative and dissipative forces in an AI-Au(lll) tip-sample system. Phys Rev Lett 86:2597–2600

    Article  Google Scholar 

  26. Dürig U (1999) Relations between interaction force and frequency shift in large-amplitude dynamic force microscopy. Appl Phys Lett 75:433–435

    Article  Google Scholar 

  27. Hölscher H, Allers W, Schwarz UD, Schwarz A, Wiesendanger R (1999) Determination of tip-sample interaction potentials by dynamic force spectroscopy. Phys Rev Lett 83:4780–4783

    Article  Google Scholar 

  28. Hölscher H, Schwarz A, Allers W, Schwarz UD, Wiesendanger R (2000) Quantitative analysis of dynamic-foree-spectroscopy data on graphite(OOO 1) in the contact and noncontact regime. Phys Rev B 61:12678–12681

    Article  Google Scholar 

  29. Guggisberg M, Bammerlin M, Meyer E, Güntherodt H-J (2000) Separation of interactions by noncontact force microscopy. Phys Rev B 61: 11151–11155

    Article  Google Scholar 

  30. Dürig U (2000) Extracting interaction forces and complementary observables in dynamic probe microscopy. Appl Phys Lett 76: 1203–1205

    Article  Google Scholar 

  31. Mertz J, Marti O, Mlynek J (1993) Regulation of a microcantilever response by force feedback. Appl Phys Lett 62:2344–2346

    Article  Google Scholar 

  32. Rugar D, Grütter P (1991) Mechanical parametric amplification and thermomechanical noise squeezing. Phys Rev Lett 67:699–702

    Article  Google Scholar 

  33. Anczykowski B, Cleveland JP, Krüger D, Elings VB, Fuchs H (1998) Analysis of the interaction mechanisms in dynamic mode SFM by means of experimental data and computer simulation. Appl Phys A 66:885–889

    Article  Google Scholar 

  34. Sulchek T, Yaralioglu GG, Quate CF, Minne SC (2002) Characterization and optimisation of scan speed for tapping-mode atmoic force microscopy. Rev Sci Instr 73:2928–2936

    Article  Google Scholar 

  35. Chi LF, Jacobi S, Anczykowski B, Overs M, Schäfer H-J, Fuchs H (2000) Supermolecular periodic structures in monolayers. Adv Mater 12:25–30

    Article  Google Scholar 

  36. Gao S, Chi LF, Lenhert S, Anczykowski B, Niemeyer C, Adler M, Fuchs H (2001) High-quality mapping of DNA-protein complexes by dynamic scanning force microscopy. Chern Phys Chern 6:384–388

    Google Scholar 

  37. Zou B, Wang M, Qiu D, Zhang X, Chi LF, Fuchs H (2002) Confined supramolecular nanostructures of mesogen-bearing amphiphiles. Chern Commun 9:1008–1009

    Article  Google Scholar 

  38. Pignataro B, Chi LF, Gao S, Anczykowski B, Niemeyer C, Adler M, Fuchs H (2002) Dynamic scanning force microscopy study of self-assembled DNA-protein nanostructures. Appl Phys A 74:447–452

    Article  Google Scholar 

  39. Dürig U (2000) Interaction sensing in dynamic force microscopy. New J Phys 2:5.1–5.12

    Article  Google Scholar 

  40. Stowe TD, Kenny TW, Thomson DJ, Rugar D (1999) Silicon dopant imaging by dissipation force microscopy. Appl Phys Lett 75:2785–2787

    Article  Google Scholar 

  41. Liu Y, Grütter P (1998) Magnetic dissipation force microscopy studies of magnetic materials. J Appl Phys 83:7333–7338

    Article  Google Scholar 

  42. Anczykowski B, Gotsmann B, Fuchs H, Cleveland JP, Elings VB (1999) How to measure energy dissipation in dynamic mode atomic force microscopy. Appl Surf Sci 140:376–382

    Article  Google Scholar 

  43. Cleveland JP, Anczykowski B, Schmid AE, Elings VB (1998) Energy dissipation in tappingmode atomic force microscopy. Appl Phys Lett 72:2613–2615

    Article  Google Scholar 

  44. García R, Tamayo J, Calleja M, García F (1998) Phase contrast in tapping-mode scanning force microscopy. Appl Phys A 66:S309–S312

    Article  Google Scholar 

  45. Tamayo J, García R (1997) Effects of elastic and inelastic interactions on phase contrast images in tapping-mode scanning force microscopy. Appl Phys Lett 71:2394–2396

    Article  Google Scholar 

  46. Sasaki N, Tsukada M (2000) Effect of microscopic nonconservative process on noncontact atomic force microscopy. Jpn J Appl Phys 39:L1334–L1337

    Article  Google Scholar 

  47. Lüthi R, Meyer E, Bammerlin M, Baratoff A, Howald L, Gerber C, Güntherodt H-J (1997) Ultrahigh vacuum atomic force microscopy: true atomic resolution. Surf Rev Lett 4:10251029

    Article  Google Scholar 

  48. Bennewitz R, Foster AS, Kantorovich LN, Bammerlin M, Loppacher CH, Schär S, Guggisberg M, Meyer E, Shluger AL (2000) Atomically resolved edges and kinks of NaCl islands on Cu(111): experiment and theory. Phys Rev B 62:2074–2084

    Article  Google Scholar 

  49. Israelachvili J (1992) Intermolecular and surface forces. Academic Press

    Google Scholar 

  50. Rabe U, Turner J, Arnold W (1998) Analysis of the high-frequency response of atomic force microscope cantilevers. Appl Phys A 66:S277–S282

    Article  Google Scholar 

  51. Rodríguez TR, García R (2002) Tip motion in amplitude modulation (tapping-mode) atomicforce microscopy: Comparison between continuous and point-mass models. Appl Phys Lett 80:1646–1648

    Article  Google Scholar 

  52. García R, Tamayo J, San Paulo A (1999) Phase contrast and surface energy hysteresis in tapping mode scanning force microsopy. Surf Interface Anal 27:312–316

    Article  Google Scholar 

  53. Tamayo J, García R (1998) Relationship between phase shift and energy dissipation in tapping-mode scanning force microscopy. Appl Phys Lett 73:2926–2928

    Article  Google Scholar 

  54. Chen X, McGurk SL, Davies MC, Roberts CJ, Shakesheff KM, Tendler SJB, Williams PM, Davies J, Dwakes AC, Domb A (1998) Chemical and morphological analysis of surface enrichment in a biodegradable polymer blend by phase-detection imaging atomic force microscopy. Macromolecules 31:2278–2283

    Article  Google Scholar 

  55. Pickering JP, Vancso GJ (1998) Apparent contrast reversal in tapping mode atomic force microscope images on films of polystyrene-b-polyisoprene-b-polystyrene. Polymer Bulletin 40:549–554

    Article  Google Scholar 

  56. Kühle A, Sørensen AH, Bohr J (1997) Role of attractive forces in tapping tip force microscopy. J Appl Phys 81:6562–6569

    Article  Google Scholar 

  57. Kühle A, Sørensen AH, Zandbergen JB, Bohr J (1998) Contrast artifacts in tapping tip atomic force microscopy. Appl Phys A 66:S329–S332

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schirmeisen, A., Anczykowski, B., Fuchs, H. (2004). Dynamic Force Microscopy. In: Applied Scanning Probe Methods. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35792-3_1

Download citation

Publish with us

Policies and ethics