Advertisement

Nanoelektronik pp 149-223 | Cite as

Fernziele der Nanoelektronik

Chapter
  • 2.6k Downloads
Part of the acatech DISKUSSION book series (ACATECHDISKUSSION)

Zusammenfassung

Während der vergangenen vierzig Jahre folgte die Entwicklung der Mikroelektronik dem Moore#x2019;schen Gesetz, einem empirischen Gesetz, welches vorhersagt, dass sich die Bauelementedichte und die Leistungsfähigkeit monolithisch integrierter Siliziumschaltkreise in zeitlichen Abständen von 18 Monaten jeweils verdoppeln.1 Während dieser vierzig Jahre verringerten sich die Strukturgrößen von Transistoren von 10 Mikrometer auf etwa 30 Nanometer. In den letzten 25 Jahren entwickelte sich die siliziumbasierte komplementäre Metalloxid-Halbleitertechnologie (CMOS) zur Mainstreamtechnologie für digitale, analoge und Mixed-Signal-Anwendungen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Aassime, A./ Johansson, G./ Wendin, G./ Schoelkopf, R./ Delsing, P.: “Radio-Frequency Single-Electron Transistor as Readout Device for Qubits: Charge Sensitivity and Back-action”. In: Physical Review Letters, 86: 15, 2001, S. 3376–3379.Google Scholar
  2. Abdellah, A./ Fabel, B./ Lugli, P./ Scarpa, G.: “Spray Deposition of Organic Semiconducting Thin-Films: Towards the Fabrication of Arbitrary Shaped Organic Electronic Devices”. In: Organic Electronics, 11, Issue 6, Juni 2010, S. 1031–1038.Google Scholar
  3. Abrams, D. S./ Lloyd, S.: “Simulation of Many-Body Fermi Systems on a Universal Quantum Computer”. In: Physical Review Letters, 79: 13, 1997, S. 2586–2589.Google Scholar
  4. Ahmed, I./ Er Ping Li/ Lee, H.: “Electromagnetic Waveguiding in Metallic Plasmonic Structures Using FDTD”. In: IEEE: Nanotechnology, 2007 (IEEE-NANO 2007. 7th IEEE Conference on, 2007), S. 494–497.Google Scholar
  5. Ahmed, I./ Er Ping Li/ Vahldieck, R.: “Electromagnetic Wave Propagation in a Ag Nano-particle-Based Plasmonic Power Divider”. In: Optics Express, 17: 1, 2009, S. 337–345.Google Scholar
  6. Akarvardar, K./ Elata, D./ Parsa, R./ Wan, G. C./ Yoo, K./ Provine, J./ Peumans, P./ Howe, R. T./ Wong, H. S.: “Design Considerations for Complementary Nanoelectromechanical Logic Gates”. In: IEEE International: Electron Devices Meeting, 2007 (IEDM 2007), 2007, S. 299–302.Google Scholar
  7. Akinaga, H./ Shima, H.: “Resistive Random Access Memory (ReRAM) Based on Metal Oxides”. In: Proceedings of the IEEE, 98: 12, 2010, S. 2237–2251.Google Scholar
  8. Alam, M. T./ Siddiq, M. J./ Bernstein, G. H./ Niemier, M./ Porod, W./ Hu, X. S.: “On-Chip Clocking for Nanomagnet Logic Devices”. In: IEEE Transactions on Nanotechnology, 9: 3, 2010, S. 348–351.Google Scholar
  9. Annett, J. F.: Superconductivity, Superfluids, and Condensates, Oxford: Oxford University Press, USA, 2004.Google Scholar
  10. Appenzeller, J./ Lin, Y./ Knoch, J./ Avouris, P: “Band-to-band Tunneling in Carbon Nano-tube Field-Effect Transistors”. In: Physical Review Letters, 93: 19, 2004, S. 196805.Google Scholar
  11. Appenzeller, J./ Knoch, J./ Bjork, M. T./ Riel, H./ Schmid, H./ Riess, W.: “Toward Nano-wire Electronics”. In: Electron Devices, IEEE Transactions on, 55: 11, November 2008, S. 2827–2845.Google Scholar
  12. Ashley, T./ Emeny, M. T./ Hayes, D. G./ Hilton, K. P./ Jefferies, R./ Maclean, J. O./ Smith, S. J./ Tang, A. W./ Wallis, D. J./ Webber, P. J.: “High-Performance InSb Based Quantum Well Field Effect Transistors for Low-Power Dissipation Applications”. In: IEEE International Electron Devices Meeting (IEDM), 2009, Baltimore, U.S.A., S. 1–4. (Tagungsband)Google Scholar
  13. Awschalom, D. D./ Flatté, M. E.: “Challenges for Semiconductor Spintronics”. In: Nature Physics, 3: 3, 2007, S. 153–159.Google Scholar
  14. Bachtold, A./ Hadley, P./ Nakanishi, T./ Dekker, C.: “Logic Circuits with Carbon Nanotube Transistors”. In: Science, 294, 2001, S. 1317–1320.Google Scholar
  15. Bae, S./ Kim, H./ Lee, Y./ Xu, X./ Park, J./ Zheng, Y./ Balakrishnan, J./ Lei, T./ Kim, H. R./ Song, Y. I./ Kim, Y./ Kim, K. S./ Ozyilmaz, B./ Ahn, J./ Hong, B. H./ Iijima, S.: “Roll-to-Roll Production of 30-inch Graphene Films for Transparent Electrodes”. In: Nature Nanotechnology, 5: 8, 2010, S. 574–578.Google Scholar
  16. Baierl, D./ Fabel, B./ Lugli, P./ Scarpa, G.: “Efficient Indium-Tin-Oxide (ITO) Free Top-Absorbing Organic Photodetector with Highly Transparent Polymer Top Electrode”. In: Organic Electronics, 12, Issue 10, Oktober 2011, S. 1669–1673.Google Scholar
  17. Bardeen, J./ Cooper, L. N./ Schrieffer, J. R.: “Microscopic Theory of Superconductivity”. In: Physical Review, 106: 1, 1957, S. 162–164.MathSciNetGoogle Scholar
  18. Bardeen, J./ Cooper, L. N./ Schrieffer, J. R.: “Theory of Superconductivity”. In: Physical Review, 108: 5, 1957, S. 1175–1204.zbMATHMathSciNetGoogle Scholar
  19. Bareiß, M./ Imtaar, M. A./ Fabel, B./ Scarpa, G./ Lugli, P.: “Temperature Enhanced Large Area Nano Transfer Printing on Si/SiO2 Substrates Using Si Wafer Stamps”. In: Journal of Adhesion, 87, Issue 9, 2011, S. 893–901.Google Scholar
  20. Barnes, W./ Dereux, A./ Ebbesen, T.: “Surface Plasmon Subweavlength Optics”. In: Nature, 424, 2003, S. 824–830.Google Scholar
  21. Baughman, R./ Zakhidov, A./ de Heer, W.: “Carbon Nanotubes — the Route Toward Applications”. In: Science, 297, 2002, S. 787–792.Google Scholar
  22. Baumgardner, J./ Petsetski, A./ Murduck, J./ Przybysz, J./ Adam, J./ Zhang, H.: “Inherent Linearity in Carbon Nanotube Field-Effect Transistors”. In: Applied Physics Letters, 91, 2007, S. 1–3.Google Scholar
  23. Becherer, M./ Csaba, G./ Emling, R./ Ji, L./ Porod, W./ Lugli, P. et al.: “Ordering Phenomena in Focused Ion Beam Structured Co/Pt Multilayers”. In: Proceedings of the 71st Annual Meeting of the German Physical Society, Verhandl, DPG (VI), 2007, S. 42.Google Scholar
  24. Becherer, M./ Csaba, G./ Porod, W./ Emling, R./ Lugli, P./ Schmitt-Landsiedel, D.: “Magnetic Ordering of Focused-Ion-Beam Structured Cobalt-Platinum Dots for Field-Coupled”. In: IEEE Transactions on Nanotechnology, 7: 3, Mai 2008, S. 316–320.Google Scholar
  25. Becker, H. J.: “Low voltage electrolytic capacitor”. In: US Patent 2,800,616, 1957.Google Scholar
  26. Behin-Aein, B./ Datta, D./ Salahuddin, S./ Datta, S.: “Proposal for an All-Spin Logic Device with Built-in Memory”. In: Nature Nanotechnology, 5: 4, 2010, S. 266–270.Google Scholar
  27. Bernstein, G. H./ Imrea, A./ Metlushko, V./ Orlov, A./ Zhou, L./ Ji, L./ Csaba, G./Porod, W.: “Magnetic QCA Systems”. In: Microelectronics Journal, 36, 2005, S. 619–624.Google Scholar
  28. Bhuwalka, K. K./ Schulze, J./ Eisele, I.: “Performance Enhancement of Vertical Tunnel Field-Effect Transistor with SiGe in the p+ Layer”. In: Japanese Journal of Applied Physics,43, 2004, S. 4073–4078.Google Scholar
  29. Bocko, M. F./ Herr, A. M./ Feldman, M. J.: “Prospects for Quantum Coherent Computation Using Superconducting Electronics”. In: IEEE Transactions on Applied Superconductivity, 7: 2, 1997, S. 3638–3641.Google Scholar
  30. Boucart, K./ Riess, W./ Ionescu, A. M.: “Lateral Strain Profile as Key Technology Booster for All-Silicon Tunnel FETs”. In: IEEE Electron Device Letters, 30: 6, 2009, S. 656–658.Google Scholar
  31. Burke, P.: “An RF Circuit Model for Carbon Nanotubes”. In: Nanotechnology, 2002 (IEEE-NANO 2002. Proceedings of the 2002 2nd IEEE Conference on Nanotechnology), Washington D.C., U.S.A., S. 393–396.Google Scholar
  32. Burke, P.: “An RF Circuit Model for Carbon Nanotubes”. In: IEEE Transactions on Nanotechnology, 2: 1, 2003, S. 55–58.Google Scholar
  33. Cao, Q./ Kim, H./ Pimparkar, N./ Kulkarni, J. P./ Wang, C./ Shim, M./ Roy, K./ Alam, M. A./ Rogers, J. A.: “Medium-Scale Carbon Nanotube Thin-Film Integrated Circuits on Flexible Plastic Substrates”. In: Nature, 454, 2008, S. 495–500.Google Scholar
  34. Cao, Q./ Rogers, J. A.: “Random Networks and Aligned Arrays of Single-Walled Carbon Nanotubes for Electronic Device Applications”. In: Nano Research, 1: 4, 2008, S. 259–272.Google Scholar
  35. Capasso, F./ Munday, J./ Iannuzzi, D./ Chan, H.: “Casimir Forces and Quantum Electro-dynamical Torques: Physics and Nanomechanics”. In: IEEE Journal of Selected Topics in Quantum Electronics, 13: 2, 2007, S. 400–414.Google Scholar
  36. Chou, S. Y.: “Imprint of Sub-25 nm Vias and Trenches in Polymers”. In: Applied Physics Letters, 67, 1995, S. 3114–3116.Google Scholar
  37. Chua, L.: “Memristor — The Missing Circuit Element”. In: IEEE Transactions on Circuit Theory, 18: 5, 1971, S. 507–519.Google Scholar
  38. Coey, J./ Sanvito, S.: “Magnetic Semiconductors and Half-Metals”. In: J. of Physics D: Applied Physics, 37, 2004, S. 988–993.Google Scholar
  39. Colombo, C./ Spirkoska, D./ Frimmer, M./ Abstreiter, G./ Fontcubertai Morral, A.: “Ga-Assisted Aatalyst-Free Growth Mechanism of GaAs Nanowires by Molecular Beam Epitaxy”. In: Physical Review B, 77, 2008.Google Scholar
  40. Conway, B./ Birss, V./ Wojtowicz, J.: “The Role and Utilization of Pseudocapacitance for Energy Storage by Supercapacitors”. In: Journal of Power Sources, 66: 1–2, 1997, S. 1–14.Google Scholar
  41. Cowburn, R./ Welland, M.: “Room Temperature Magnetic Quantum Cellular Automata”. In: Science, 287, 2000, S. 1466–1468.Google Scholar
  42. Csaba, G./ Lugli, P./ Csurgay, A./ Porod, W.: “Simulation of Power Gain and Dissipation in Field-Coupled Nanomagnets”. In: Journal of Computational Electronics, 4, 2005, S. 105–110.Google Scholar
  43. Csaba, G./ Kiermaier, J./ Becherer, M./ Breitkreutz, S./ Ju, X./ Lugli, P./ Schmitt-Landsiedel, D./ Porod, W.: “Clocking Magnetic Field-Coupled Devices by Domain Walls”. In: Journal of Applied Physics, 111: 7, April 2012, S. 07E337–07E337–3.Google Scholar
  44. Csaba, G./ Lugli, P.: “Read-Out Design Rules for Molecular Crossbar Architectures”. In: IEEE Transactions on Nanotechnology, 8: 3, 2009, S. 369–374.Google Scholar
  45. Cui, Y./ Lieber, C. M.: “Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks”. In: Science, 291, 2. Februar 2001, S.851–853.Google Scholar
  46. Dash, S./ Sharma, S./ Patel, R./ De Jong, M./ Jansen, R.: “Electrical Creation of Spin Polarization in Silicon at Room Temperature”. In: Nature, 462, 2009, S. 491–494.Google Scholar
  47. Dean, C. R./ Young, A. F./ Meric, I./ Lee, C./ Wang, L./ Sorgenfrei, S./ Watanabe, K./ Taniguchi, T./ Kim, P./ Shepard, K. L./ Hone, J.: “Boron Nitride Substrates for High-Quality Graphene Electronics”. In: Nature Nanotechnology, 5: 10, 2010, S. 722–726.Google Scholar
  48. Dekker, C.: “Carbon Nanotubes as Molecular Quantum Wires”. In: Physics Today, 52, 1999, S. 22–28.Google Scholar
  49. Ding, L./ Tselev, A./ Wang, J./ Yuan, D./ Chu, H./ McNicholas, T. P./ Li, Y./ Liu, J.: “Selective Growth of Well-Aligned Semiconducting Single-Walled Carbon Nanotubes”. In: Nano Letters, 9: 2, 2009, S. 800–805.Google Scholar
  50. Ditlbacher, H./ Hohenau, A./ Wagner, D./ Kreibig, U./ Rogers, M./ Hofer, F./ Aussenegg, F. R./ Krenn, J. R.: “Silver Nanowires as Surface Plasmon Resonators”. In: Physical Review Letters, 95, 2005, S. 1–4.Google Scholar
  51. Dragoman, M./ Konstantinidis, G./ Kostopoulos, A./ Dragoman, D./ Neculoiu, D./ Buiculescu, R./ Plana, R./ Coccetti, F./ Hartnagel, H.: “Multiple Negative Resistances in Trenched Structures Bridged with Carbon Nanotubes”. In: Applied Physics Letters, 93: 4, 2008, S. 043117–043117–3.Google Scholar
  52. Du, X./ Skachko, I./ Barker, A./ Andrei, E.: “Approaching Ballistic Transport in Suspended Graphene”. In: Nature Nanotechnology, 3: 8, 2008, S. 491–495.Google Scholar
  53. Duty, T./ Gunnarsson, D./ Bladh, K./ Delsing, P.: “Coherent Dynamics of a Josephson Charge Qubit”. In: Physical Review B, 69, 2004, S. 1–4.Google Scholar
  54. Ebbesen, T./ Ajayan, P.: “Large-Scale Synthesis of Carbon Nanotubes”. In: Nature, 358, 1992, S. 220–222.Google Scholar
  55. Erlen, C./ Lugli, P.: IEEE Trans. on Electron Devices, ED56, 2009, S. 546–455.Google Scholar
  56. Feynman, R. P.: “There’s Plenty of Room at the Bottom” (Vortrag, American Physical Society in Pasadena, 29. Dezember 1959), Pasadena, 1959. In: Engineering and Science (Caltech), Februar 1960, S. 20 ff.Google Scholar
  57. Feynman, R. P.: “Simulating Physics with Computers”. In: International Journal of Theoretical Physics, 21: 6/7, 1982, S. 467–488.MathSciNetGoogle Scholar
  58. Fichtner, N./ Russer, P.: “On the Possibility of Nanowire Antennas” (36th European Microwave Conference, 2006), Manchester, U.K., S. 870–873 (Tagungsband).Google Scholar
  59. Flocke, A./ Noll T. G.: “Fundamental Analysis of Resistive Nano-Crossbars for the Use in Hybrid Nano/CMOS-Memory” (33rd European Solid State Circuits Conference, September 2007), Proc. ESSCIRC, Munich, Germany, 2007, S. 328–331 (Tagungsband).Google Scholar
  60. Fontcubertai Morral, A./ Colombo, C./ Abstreiter, G./ Arbiol, J./ Morante, J. R.: “Nucleation Mechanism of Gallium-Assisted Molecular Beam Epitaxy Growth of Gallium Arsenide Nanowires”. In: Applied Physics Letters, 92, 063112, 2008.Google Scholar
  61. Frackowiak, E./ Metenier, K./ Bertagna, V./ Beguin, F.: “Supercapacitor Electrodes from Multiwalled Carbon Nanotubes”. In: Applied Physics Letters, 77: 15, 2000, S. 2421–2423.Google Scholar
  62. Franklin, A. D./ Chen, Z.: “Length Scaling of Carbon Nanotube Transistors”. In: Nature Nanotechnology, 5: 12, 2010, S. 858–862.Google Scholar
  63. Frischeisen, J. et al.: “Light Extraction from Surface Plasmons and Waveguide Modes in an Organic Light-Emitting Layer by Nanoimprinted Gratings”. In: Optics Express, 19, Issue S1, 2011, S. A7–A19.Google Scholar
  64. Fujita, S./ Nomura, K./ Abe, K./ Lee, T. H.: “3-D Nanoarchitectures with Carbon Nanotube Mechanical Switches for Future On-Chip Network Beyond CMOS Architecture”. In: IEEE Transactions on Circuits and Systems I: Regular Papers, 54: 11, 2007, S. 2472–2479.Google Scholar
  65. Geim, A. K.: “Graphene: Status and Prospects”. In: Science, 324, 2009, S. 1530–1534.Google Scholar
  66. Geim, A. K./ Novoselov, K. S.: “The Rise of Graphene”. In: Arxiv preprint cond-mat/0702595, 2007.Google Scholar
  67. Green, J. E./ Choi, J. W./ Boukai, A./ Bunimovich, Y./ Johnston-Halperin, E./ DeIonno, E./ Luo, Y./ Sheriff, B. A./ Xu, K./ Shin, Y. S./ Tseng, H./ Stoddart, J. F./ Heath, J. R.: “A 160-kilo-bit Molecular Electronic Memory Patterned at 1011 Bits Per Square Centimetre”. In: Nature, 445, 2007, S. 414–417.Google Scholar
  68. Gruska, J.: Quantum Computing, New York: McGraw-Hill, 1999.Google Scholar
  69. Guo, T./ Nikolaev, P./ Rinzler, A./ Tomanek, D./ Colbert, D./ Smalley, R.: “Self-Assembly of Tubular Fullerenes”. In: Journal of Physical Chemistry, 99, 1995, S. 10694–10697.Google Scholar
  70. Guo, T./ Nikolaev, P./ Thess, A./ Colbert, D./ Smalley, R.: “Catalytic Growth of Single-Walled Nanotubes by Laser Vaporization”. In: Chemical Physics Letters, 243, 1995, S. 49–54.Google Scholar
  71. Hall, K. C./ Flatté M. E.: “Performance of a Spin-Based Insulated Gate Field Effect Transistor”. In: Applied Physics Letters, 88, 2006, S. 162503–1–162503–3.Google Scholar
  72. Han, J.-H./ Lee, T./ Kim, D./ Yoo, J.-B./ Park, C.-Y./ Choi, J./ Jung, T./ Hand, I./ Kim, J.: “FieldEmission Properties of Carbon Nanotubes Grown on Co/TiN Coated Ta Substrate for Cathode in Microwave Power Amplifier”. In: Diamond and Related Materials, 13, 2004, S. 987–993.Google Scholar
  73. Harrer, S./ Strobel, S./ Scarpa, G./ Abstreiter, G./ Tornow, M./ Lugli, P.: “Room Temperature Nanoimprint Lithography Using Molds Fabricated by Molecular Beam Epitaxy”. In: IEEE Transactions on Nanotechnology, 7: 3, 2008, S. 363–379.Google Scholar
  74. Harrer, S./ Ahmed, S./ Afzali-Ardakani, A./ Luan, B./ Waggoner, P. S./ Shao, S./ Peng, H./ Goldfarb, D. L./ Martyna, G. J./ Rossnagel, S. M./ Deligianni, L./ Stolovitzky, G. A.: “Electrochemical Characterization of Thin Film Electrodes Toward Developing a DNA Transistor”. In: Langmuir, 26: 24, 2010, S. 19191–19198.Google Scholar
  75. Heer, W. A. D./ Chatelain, A./ Ugarte, D.: “A Carbon Nanotube Field-Emission Electron Source”. In: Science, 270, 1995, S. 1179–1180.Google Scholar
  76. Heremans, P./ Gelinck, G./ Müller, R./ Baeg, K./ Kim, D./ Noh, Y.: “Polymer and Organic Nonvolatile Memory Devices”. In: Chemistry of Materials, 23(3), 2011, S. 341–358.Google Scholar
  77. Hertenberger, S./ Rudolph, D./ Bichler, M./ Finley, J./ Abstreiter, G./ Koblmuller, G.: “Growth Kinetics in Position-Controlled and Catalyst-Free InAs Nanowire Arrays on Si (111) Grown by Selective Area Molecular Beam Epitaxy”. In: Journal of Applied Physics, 108: 11, 2010, S. 114316–114316.Google Scholar
  78. Hess, K.: Advanced Theory of Semiconductor Devices, New York: Wiley-Intersience 2000.Google Scholar
  79. Hirvensalo, M.: Quantum Computing, Berlin: Springer Verlag 2004.zbMATHGoogle Scholar
  80. Huber, W. M./ Arendt, B./ Huggard, P. G./ Prettl, W.: “Square-Law Josephson Detection of Far-Infrared Radiation with Current-Biased Granular Tl2Ba2CaCu2O8 Thin Films”. In: Superconductor Science and Technology, 8: 10, 1995, S. 769–773.Google Scholar
  81. Iijima, S.: “Helical Microtubules of Fraphitic Carbon”. In: Nature, 354, 1991, S. 56–58.Google Scholar
  82. Imre, A./ Csaba, G./ Bernstein, G./ Porod, W./ Metlushko, V.: “Investigation on Shape-Dependent Switching of Coupled Nanomagnets”. In: Superlattices and Microstructures, 34, 2003, S. 513–518.Google Scholar
  83. Imre, A./ Csaba, G./ Ji, L./ Orlov, A./ Bernstein, G./ Porod, W.: “Majority Logic Gate for Magnetic Quantum-Dot Cellular Automata”. In: Science, 311, 2006, S. 205–208.Google Scholar
  84. Ishigami, N./ Ago, H./ Imamoto, K./ Tsuji, M./ Iakoubovskii, K./ Minami, N.: “Crystal Plane Dependent Growth of Aligned Single-Walled Carbon Nanotubes on Sapphire”. In: Journal of the American Chemical Society, 130: 30, 2008, S. 9918–9924.Google Scholar
  85. Semiconductor Industry Association. The International Technology Roadmap for Semiconductors, 2005 edition. International SEMATECH: Albany, NY, 2005.Google Scholar
  86. Semiconductor Industry Association. The International Technology Roadmap for Semiconductors, 2007 edition. International SEMATECH: Albany, NY, 2007.Google Scholar
  87. Semiconductor Industry Association. The International Technology Roadmap for Semiconductors, 2008 update. International SEMATECH: Albany, NY, 2008.Google Scholar
  88. James, M./ Cheng, L./ Nackashi, D./ Yao, Y./ Flatt, A./ Angelo, S./ Mallouk, T./ Franzon, P.: “Nanocell Electronic Memories”. In: Journal of the American Chemical Society, 125: 43, 2003, S. 13279–13283.Google Scholar
  89. Jang, W. W./ Lee, J. O./ Yoon, J./ Kim, M./ Lee, J./ Kim, S./ Cho, K./ Kim, D./ Park, D./ Lee, W.: “Fabrication and Characterization of a Nanoelectromechanical Switch with 15-nm-Thick Suspension Air Gap”. In: Applied Physics Letters, 92: 10, 2008, S. 103110–103110–3.Google Scholar
  90. Jo, S. H./ Chang, T./ Ebong, I./ Bhadviya, B. B./ Mazumder, P./ Lu, W.: “Nanoscale Memristor Device as Synapse in Neuromorphic Systems”. In: Nano Letters, 10: 4, 2010, S. 1297–1301.Google Scholar
  91. Ju, X./ Savo, A./ Lugli, P./ Kiermaier, J./ Becherer, M./ Breitkreutz, S./ Schmitt-Landsiedel, D./ Porod, W./ Csaba, G.: “Computational Study of Domain-Wall-Induced Switching of Co/Pt Multilayer” (15th International Workshop on Computational Electronics, IWCE, Mai 2012), Madison, Wisconsin, U.S.A., 2012, S. 1–3 (Tagungsband).Google Scholar
  92. Ju, X./ Wartenburg, S./ Rezgani, J./ Becherer, M./ Kiermaier, J./ Breitkreutz, S./ Schmitt-Landsiedel, D./ Porod, W./ Lugli, P./ Csaba, G.: “Nanomagnet Logic from Partially Irradiated Co/Pt Nanomagnets”. In: IEEE Transactions on Nanotechnology, 11: 1, Januar 2012, S. 97–104.Google Scholar
  93. Kaeriyama, S./ Sakamoto, T./ Sunamura, H./ Mizuno, M./ Kawaura, H./ Hasegawa, T./ Terabe, K./ Nakayama, T./ Aono, M.: “A Nonvolatile Programmable solid-Electrolyte Nanometer Switch”. In: IEEE Journal ofSolid-State Circuits, 40: 1, 2005, S. 168–176.Google Scholar
  94. Kaertner, F. X./ Russer, P.: “Generation of Squeezed Microwave States by a Dc-Pumped Degenerate Parametric Josephson Junction Oscillator”. In: Physical Review A, 42: 9, 1990, S. 5601–5612.Google Scholar
  95. Kang, S. J./ Kocabas, C./ Ozel, T./ Shim, M./ Pimparkar, N./ Alam, M. A./ Rotkin, S. V./ Rogers, J. A.: “High-Performance Electronics Using Dense, Perfectly Aligned Arrays of Single-Walled Carbon Nanotubes”. In: Nature Nanotechnology, 2: 4, 2007, S. 230–236.Google Scholar
  96. Kärtner, F. X./ Schenzle, A.: “Analytic Solution for the Dissipative Anharmonic Quantum Oscillator and Semiclassical Analysis”. In: Physical Review A, 48: 2, 1993, S. 1009–1019.MathSciNetGoogle Scholar
  97. Kasper, E./ Kissinger, D./ Russer, P./ Weigel, R.: „High Speeds in a Single Chip”. In: IEEE Microwave Magazine, 10: 7, 2009, S. 28–33.Google Scholar
  98. Kedzierski, J./ Hsu, P./ Healey, P./ Wyatt, P. W./ Keast, C. L./ Sprinkle, M./ Berger, C./ de Heer, W. A.: “Epitaxial Graphene Transistors on SiC Substrates”. In: IEEE Transactions on Electron Devices, 55: 8, 2008, S. 2078–2085.Google Scholar
  99. Khitun, A./ Nikonov, D./ Wang, K.: “Magnetoelectric Spin Wave Amplifier for Spin Wave Logic Circuits”. In: Journal of Applied Physics, 106, 2009, S. 123909.Google Scholar
  100. Klauk, H.: “Organic Thin-Film Transistors”. In: Chemical Society Reviews, 39, 2010,S. 2643–2666.Google Scholar
  101. Kocabas, C./ Kang, S. J./ Ozel, T./ Shim, M./ Rogers, J. A.: “Improved Synthesis of Aligned Arrays of Single-Walled Carbon Nanotubes and Their Implementation in Thin Film Type Transistors”. In: Journal of Physical Chemistry C, 111, 2007, S. 17879–17886.Google Scholar
  102. Kocabas, C./ Kim, H./ Banks, T./ Rogers, J. A./ Pesetski, A. A./ Baumgardner, J. E./ Krishnaswamy, S. V./ Zhang, H.: “Radio Frequency Analog Electronics Based on Carbon Nanotube Transistors”. In: Proceedings of the National Academy of Sciences, 105: 5, 2008, S. 1405–1409.Google Scholar
  103. Kocabas, C./ Dunham, S./ Cao, Q./ Cimino, K./ Ho, X./ Kim, H. S./ Dawson, D./ Payne, J./ Stuenkel, M./ Zhang, H. et al.: “High-Frequency Performance of Submicrometer Transistors That Use Aligned Arrays of Single-Walled Carbon Nanotubes”. In: Nano Letters, 9: 5, 2009, S. 1937–1943.Google Scholar
  104. Koo, H. C./ Kwon, J. H./ Eom, J./ Chang, J./ Han, S. H./ Johnson, M.: “Control of Spin Precession in a Spin-Injected Field Effect Transistor”. In: Science, 325, 2009, S. 1515–1518.Google Scholar
  105. Koswatta, S. O./ Lundstrom, M. S./ Nikonov, D. E.: “Performance Comparison Between p-i-n Tunneling Transistors and Conventional MOS-FETs”, In: IEEE Transactions on Electron Devices, 56: 3, 2009, S. 456–465.Google Scholar
  106. Kuzum, D./ Krishnamohan, T./ Nainani, A./ Sun, Y./ Pianetta, P. A./ Wong, H. S./ Saraswat, K. C.: “High-Mobility Ge N-MOSFETs and Mobility Degradation Mechanisms”. In: IEEE Transactions on Electron Devices, 58: 1, 2011, S. 59–66.Google Scholar
  107. Kuzum, D./ Jeyasingh, R./ Lee, B./ Wong, H.: “Nanoelectronic Programmable Synapses Based on Phase Change Materials for Brain-Inspired Computing”. In: Nano Letters, 12(5), 2012, S. 2179–2186.Google Scholar
  108. Lacquaniti, V./ Cagliero, C./ Maggi, S./ Steni, R./ Andreone, D./ Sosso, A.: “RF Properties of Overdamped SIS Junctions”. In: IEEE Transactions on Applied Superconductivity, 15: 2, 2005, S. 114–116.Google Scholar
  109. Landauer, R.: “Irreversibility and Heat Generation in the Computing Process”. In: IBM Journal of Research and Development, 44: 1, 2000, S. 261–269.MathSciNetGoogle Scholar
  110. Lau, C./ Stewart, D./ Williams, R./ Bockrath, M.: “Direct Observation of Nanoscale switching Centers in Metal/Molecule/Metal Structures”. In: Nano Letters, 4: 4, 2004, S. 569–572.Google Scholar
  111. Lee, M./ Park, Y./ Suh, D./ Lee, E./ Seo, S./ Kim, D./ Jung, R./ Kang, B./ Ahn, S./ Lee, C. B./ Seo, D. H./ Cha, Y./ Yoo, I./ Kim, J./ Park, B. H.: “Two Series Oxide Resistors Applicable to High Speed and High Density Nonvolatile Memory”. In: Advanced Materials, 19: 22, 2007, S. 3919–3923.Google Scholar
  112. Lee, C./Yu, L./ Chen, H.: “Memory Bistable Mechanisms of Organic Memory Devices”. In: Applied Physics Letters, 97: 4, 2010, S. 043301–043301–3.Google Scholar
  113. Lee, M./ Lee, C. B./ Lee, D./ Lee, S. R./ Chang, M./ Hur, J. H./ Kim, Y./ Kim, C./ Seo, D. H./ Seo, S./ Chung, U./ Yoo, I./ Kim, K.: “A Fast, High-Endurance and Scalable Non-Volatile Memory Device Made from Asymmetric Ta2O5x/TaO2x Bilayer Structures”. In: Nature Materials, 10: 8, 2011, S. 625–630.Google Scholar
  114. Lemme, M./ Echtermeyer, T./ Baus, M./ Kurz, H.: “A Graphene Field-Effect Device”. In: IEEE Electron Device Letters, 28: 4, 2007, S. 282–284.Google Scholar
  115. Lent, C./ Isaksen, B./ Lieberman, M.: “Molecular Quantum-Dot Cellular Automata”. In: Journal of the American Chemical Society, 125: 4, 2003, S. 1056–1063.Google Scholar
  116. Li, S./ Yu, Z./ Yen, S. F./ Tang, W. C./ Burke, P. J.: “Carbon Nanotube Transistor Operation at 2.6 GHz”. In: Nano Letters, 4: 4, 2004, S. 753–756.Google Scholar
  117. Li, Q./ Koo, S./ Edelstein, M. D./ Suehle, J. S./ Richter, C. A.: “Silicon Nanowire Electromechanical Switch for Logic Device Application”. In: MRS Online Proceedings Library, 1018, 2007, S. 1018–EE09–07.Google Scholar
  118. Li, X./ Wang, X./ Zhang, L./ Lee, S./ Dai, H.: “Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors”. In: Science, 319, 2008, S. 1229–1232.Google Scholar
  119. Li, X./ Cai, W./ An, J./ Kim, S./ Nah, J./ Yang, D./ Piner, R./ Velamakanni, A./ Jung, I./ Tutuc, E./ Banerjee, S. K./ Colombo, L./ Ruoff, R. S.: “Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils”. In: Science, 324, 2009, S. 1312–1314.Google Scholar
  120. Li, X./ Magnuson, C./ Venugopal, A./ An, J./ Suk, J./ Han, B./ Borysiak, M./ Cai, W./ Velamakanni, A./ Zhu, Y. et al.: “Graphene Films with Large Domain Size by a Two-Step Chemical Vapor Deposition Process”. In: Nano letters, 10(11), 2010.Google Scholar
  121. Li, C./ Erve, O.van’t./ Jonker, B.: “Electrical injection and detection of Spin Accumulation in Silicon at 500 K with Magnetic Metal/Silicon Dioxide Contacts”. In: Nature Communications, 2, 2011, S. 245.Google Scholar
  122. Li, P./ Csaba, G./ Sankar, V. K./ Ju, X./ Lugli, P./ Hu, X. S./ Niemier, M./ Porod, W./ Bernstein, G. H.: “Switching Behavior of Lithographically Fabricated Nanomagnets for Logic Applications”, in: Journal of Applied Physics, 111: 7, März 2012, S. 07B911–07B911–3.Google Scholar
  123. Liao, L./ Lin, Y./ Bao, M./ Cheng, R./ Bai, J./ Liu, Y./ Qu, Y./ Wang, K. L./ Huang, Y./ Duan, X.: “High Speed Graphene Transistors with a Self-Aligned Nanowire Gate”. In: Nature, 467, 2010, S. 305–308.Google Scholar
  124. Likharev, K. K.: “Single-Electron Devices and Their Applications”. In: Proceedings of the IEEE, 87: 4, 1999, S. 606–632.Google Scholar
  125. Lin, Y./ Chiu, H./ Jenkins, K. A./ Farmer, D. B./ Avouris, P./ Valdes-Garcia, A.: “Dual-Gate Graphene FETs with fTof 50 GHz”. In: IEEE Electron Devices Letters, 99, 2009, S. 1–3.Google Scholar
  126. Lortscher, E./ Ciszek, J./ Tour, J./ Riel, H.: “Reversible and Controllable Switching of a Single-Molecule Junction”. In: Small, 2: 8–9, 2006, S. 973–977.Google Scholar
  127. Lu, W./ Xie, P./ Lieber, C. M.: “Nanowire Transistor Performance Limits and Applications”. In: IEEE Transactions on Electron Devices, 55: 11, 2008, S. 2859–2876.Google Scholar
  128. Lu, W./ Lieber, C.: “Nanoelectronics From the Bottom Up”. In: Nature Materials, 6: 11, 2007, S. 841–850.Google Scholar
  129. Makhlin, Y./ Schon, G./ Shnirman, A.: “Nano-Electronic Circuits as Quantum Bits”. In: Proceedings of The 2000 IEEE International Symposium on Circuits and Systems (SCAS 2000 Geneva, Volume 2), 2000, S. 241–244.Google Scholar
  130. Makhlin, Y./ Schon, G./ Shnirman, A.: “Quantum-State Engineering with Josephson-Junction Devices”. In: Reviews of Modern Physics, 73, 2001, S. 357–400.Google Scholar
  131. Meindl, J. D./ Chen, Q./ Davis, J. A.: “Limits on Silicon Nanoelectronics for Terascale Integration”. In: Science, 293, 2001, S. 2044–2049.Google Scholar
  132. Meric, I./ Han, M. Y./ Young, A. F./ Ozyilmaz, B./ Kim, P./ Shepard, K. L.: “Current Saturation in Zero-Bandgap, Top-Gated Graphene Field-Effect Transistors”. In: Nature Nanotechnology, 3: 11, 2008, S. 654–659.Google Scholar
  133. Moon, J./ Curtis, D./ Hu, M./ Wong, D./ McGuire, C./ Campbell, P./ Jernigan, G./ Tedesco, J./ VanMil, B./ Myers-Ward, R./ Eddy, C./ Gaskill, D.: “Epitaxial-Graphene RF Field-Effect Transistors on Si-Face 6H-SiC Substrates”. In: IEEE Electron Devices Letters, 30: 6, 2009, S. 650–652.Google Scholar
  134. Moon, J./ Curtis, D./ Hu, M./ Wong, D./ Campbell, P./ Jernigan, G./ Tedesco, J. L./ Van Mil, B./ Myers-Ward, R. L./ Eddy, C. et al.: “Development Toward Wafer-Scale Graphene RF Electronics” (IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, 11.–13. Januar 2010), New Orleans, LA, U.S.A., 2010, S. 1–3 (Tagungsband).Google Scholar
  135. Morozov, S. V./ Novoselov, K. S./ Katsnelson, M. I./ Schedin, F./ Elias, D. C./ Jaszczak, J. A./ Geim, A. K.: “Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer”. In: Physical Review Letters, 100: 1, 2008, S. 16602–16605.Google Scholar
  136. Munday, J. N./ Capasso, F./ Parsegian, V. A./ Bezrukov, S. M.: “Measurements of the Casimir-Lifshitz Force in Fluids: The Effect of Electrostatic Forces and Debye Screening”. In: Physical Review A, 78: 3, 2008, S. 32109.Google Scholar
  137. Munday, J. N./ Capasso, F./ Parsegian, V. A.: “Measured Long-Range Repulsive Casimir-Lifshitz Forces”. In: Nature, 457: 170, 2009, S. 170–173.Google Scholar
  138. Nayfeh, O. M./ Chleirigh, C. N./ Hennessy, J./ Gomez, L./ Hoyt, J. L./ Antoniadis, D. A.: “Design of Tunneling Field-Effect Transistors Using Strained-Silicon/Strained-Germanium Type-II Staggered Heterojunctions”. In: IEEE Electron Device Letters, 29: 9, 2008, S. 1074–1077.Google Scholar
  139. Ng, H. T./ Han, J./ Yamada, T./ Nguyen, P./ Chen, Y. P./ Meyyappan, M.: “Single Crystal Nanowire Vertical Surround-Gate Field-Effect Transistor”. In: Nano Letters, 4: 7, 2004, S. 1247–1252.Google Scholar
  140. Nielssen, M. A./ Chuang, I. L.: Quantum Computation and Quantum Information, Cambridge: Cambridge University Press 2000.Google Scholar
  141. Nougaret, L./ Happy, H./ Dambrine, G./ Derycke, V./ Bourgoin, J. P./ Green, A. A./ Hersam, M. C.: “80 GHz Field-Effect Transistors Produced Using High Purity Semiconducting Single-Walled Carbon Nanotubes”. In: Applied Physics Letters, 94: 24, 2009, S. 243505-243505-3.Google Scholar
  142. Novoselov, K. S./ Geim, A. K./ Morozov, S. V./ Jiang, D./ Zhang, Y./ Dubonos, S. V./ Grigorieva, I. V./ Firsov, A. A.: “Electric Field Effect in Atomically Thin Carbon Films”. In: Science, 306, 2004, S. 666–669.Google Scholar
  143. Novoselov, K. S./ Geim, A. K./ Morozov, S. V./ Jiang, D./ Grigorieva, M. I./ Dubonos, S. V./ Firsov, A. A.: “Two-Dimensional Gas of Massless Dirac Fermions in Graphene”. In: Arxiv preprint cond-mat/0509330, 2005.Google Scholar
  144. Orlov, A./ Imre, A./ Csaba, G./ Ji, L./ Porod, W./ Bernstein, G.: “Magnetic Quantum-dot Cellular Automata: Recent Developments and Prospects”. In: Journal of Nanoelectronics and Optoelectronics, 3: 1, 2008, S. 55–68.Google Scholar
  145. Paternostro, M./ Falci, G./ Kim, M./ Palma, G. M.: “Entanglement Between Two Superconducting QUBITs via Interaction with Nonclassical Radiation”. In: Physical Review B, 69, 2004, S. 214502.Google Scholar
  146. Perebeinos, V./ Tersoff, J./ Avouris, P.: “Electron-Phonon Interaction and Transport in Semiconducting Carbon Nanotubes”. In: Physical Review Letters, 94: 8, 2005, S. 86802–86805.Google Scholar
  147. Porod, W.: “Quantum-dot Devices and Quantum-dot Cellular Automata”. In: Journal of the Franklin Institute, 334B: 5/6, 1997, S. 1147–1175.zbMATHGoogle Scholar
  148. Pro, T./ Buckley, J./ Huang, K./ Calborean, A./ Gely, M./ Delapierre, G./ Ghibaudo, G./ Duclairoir, F./ Marchon, J. C./ Jalaguier, E./ Maldivi, P./ De Salvo, B./ Deleonibus, S.: “Investigation of Hybrid Molecular/Silicon Memories with Redox-Active Molecules Acting as Storage Media”. In: IEEE Transactions on Nanotechnology, 8: 2, 2009, S. 204–213.Google Scholar
  149. Ren, Z. F./ Huang, Z. P./ Xu, J. W./ Wang, J. H./ Bush, P./ Siegal, M. P./ Provencio, P. N.: “Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass”. In: Science, 282, 1998, S. 1105–1107.Google Scholar
  150. Rosezin, R./ Linn, E./ Nielen, L./ Kügeler, C./ Bruchhaus, R./ Waser, R.: “Integrated Complementary Resistive Switches for Passive High-Density Nanocrossbar Arrays”. In: IEEE Electron Device Letters, 32: 2, 2011, S. 191–193.Google Scholar
  151. Rothberg, J. M./ Hinz, W./ Rearick, T. M./ Schultz, J./ Mileski, W./ Davey, M./ Leamon, J. H./ Johnson, K./ Milgrew M. J./ Edwards, M./ Hoon, J./ Simons, J. F./ Marran, D./ Myers, J. W./ Davidson, J. F./ Branting, A./ Nobile, J. R./ Puc, B. P./ Light, D./ Clark, T. A./ Huber, M./ Branciforte, J. T./ Stoner, I. B./ Cawley, S. E./ Lyons, M./ Fu, Y./ Homer, N./ Sedova, M./ Miao, X./ Reed, B./ Sabina, J./ Feierstein, E./ Schorn, M./ Alanjary, M./ Dimalanta, E./ Dressman, D./ Kasinskas, R./ Sokolsky, T./ Fidanza, J. A./ Namsaraev, E./ McKernan, K. J./ Williams, A./ Roth, G. T./ Bustillo, J.: “An Integrated Semiconductor Device Enabling Non-Optical Genome Sequencing”. In: Nature, 475, 20. Juli 2011, S. 348–52.Google Scholar
  152. Russer, P.: “Influence of Microwave Radiation on Current-Voltage Characteristic of Superconducting Weak Links”. In: Journal of Applied Physics, 43, 1972, S. 2008–2010.Google Scholar
  153. Russer, P./ Fichtner, N./ Lugli, P./ Porod, W./ Russer, J. A./ Yordanov, H.: “Nanoelectronics Based Monolithic Integrated Antennas for Electromagnetic Sensors and for Wireless Communications”. In: IEEE Microwave Magazine, 11: 7, 2010, S. 58–71.Google Scholar
  154. Russer, P./ Fichtner, N.: “Nanoelectronics in Radio-Frequency Technology”. In: IEEE Microwave Magazine 11 (2010), Nr. 3, S. 115–135.Google Scholar
  155. Russer, P./ Russer, J. A.: “Nanoelectronic RF Josephson Devices”. In: IEEE Transactions on Microwave Theory and Techniques, 59: 10, 2011, S. 2685–2701.Google Scholar
  156. Saito, R./ Dresselhaus, G./ Dresselhaus, M. S.: Physical Properties of Carbon Nanotubes, London: Imperial College Press 1998.Google Scholar
  157. Sakamoto, T./ Sunamura, H./ Kawaura, H./ Hasegawa, T./ Nakayama, T./ Aono, M.: “Nanometer-Scale Switches Using Copper Sulfide”. In: Applied Physics Letters, 82, 2003, S. 3032Google Scholar
  158. Sakamoto, T./ Iguchi, N./ Aono, M.: “Nonvolatile Triode Switch Using Electrochemical Reaction in Copper Sulfide”. In: Applied Physics Letters, 96, 2010, S. 252104.Google Scholar
  159. Sato, M./ Alvarez, G. A./ Utagawa, T./ Tanabe, K./ Morishita, T.: “Characteristics of NdBa2Cu3O7⊠δ/PrBa2Cu3O7⊠δ/NdBa2Cu3O7⊠δ Planar Josephson Junctions”. In: Japanese Journal of Applied Physics, 41, 2002, S. 5572–5577.Google Scholar
  160. Scarpa G. et al.: “Pattern Generation by Using High-Resolution Nanoimprinting and Nanotransfer Printing Techniques”. In: Proceedings IEEE-NANO 2009, Genoa, Italy, 2009, S. 432–438.Google Scholar
  161. Scarpa, G./ Idzko, S. G/ Thalhammer, S.: “Biocompatibility Studies of Functionalized Regioregular Poly(3-hexylthiophene) Layers for Sensing Applications”. In: Macromole-cular Bioscience, 10: 4, 2010, S. 378–383.Google Scholar
  162. Scarpa, G. et al.: “Patterning Poly(3-hexylthiophene) (P3HT) in the Sub-50-nm Region by Nanoimprint Lithography”. In: IEEE Transactions on Nanotechnology, 10: 3, Mai 2011, S. 482–488.Google Scholar
  163. Scherer, A./ Cheng, C. C./ Yablonovich, E./ Arbet-Engels, V.: “Photonic Bandgap Crystals at Optical Wavelengths” (Pacific Rim Conference on Lasers and Electro-Optics, 1995. Technical Digest. CLEO/Pacific Rim’95,, Chiba, Japan 1995, S. 29.Google Scholar
  164. Schmitt-Landsiedel, D./ Werner, C.: “Innovative Devices for Integrated Circuits-A Design”. In: Solid-State Electronics, 53: 4, 2009, S. 411–417.Google Scholar
  165. Scott, J./ Bozano, L.: “Nonvolatilememoryelements Based on Organic Materials”. In: Advanced Materials, 19: 11, 2007, S. 1452–1463.Google Scholar
  166. Seabaugh, A. C./ Zhang, Q.: “Low-Voltage Tunnel Transistors for Beyond CMOS Logic”. In: Proceedings of the IEEE, 98: 12, 2010, S. 2095–2110.Google Scholar
  167. Sheriff, B. A./ Wang, D./ Heath, J. R./ Kurtin, J. N.: “Complementary Symmetry Nanowire Logic Circuits: Experimental Demonstrations and in Silico Optimizations”. In: ACS Nano, 2: 9, 2008, S. 1789–1798.Google Scholar
  168. Sinha, S./ Russer, P.: “Quantum Computing Algorithm for Electromagnetic Field Simulation”. In: J. Quantum Information Processing, 9: 3, 2009, S. 385–404.MathSciNetGoogle Scholar
  169. Snider, G./ Amlani, A. O. I./ Zuo, X./ Bernstein, G./ Lent, C./ Merz, J./ Porod, W.: “Quantum-dot Cellular Automata”. In: Journal of Vacuum Science & Technology A, 17: 4, 1999, S. 1394–1398.Google Scholar
  170. Snider, G. L./ Orlov, A. O./ Amlani, I./ Zuo, X./ Bernstein, G. H./ Lent, C. S./ Merz, J. L./ Porod, W.: “Quantum-dot Cellular Automata: Review and Recent Experiments”. In: Journal of Applied Physics, 85: 8, 1999, S. 4283–4285.Google Scholar
  171. Solymar, L.: Lectures on Electromagnetic Theory, Oxford: Oxford University Press 1984.Google Scholar
  172. Song, S./ Cho, B./ Kim, T./ Ji, Y./ Jo, M./ Wang, G./ Choe, M./ Kahng, Y./ Hwang, H./ Lee, T.: “Three-Dimensional Integration of Organic Resistive Memory Devices”. In: Advanced Materials, 22: 44, 2010, S. 5048–5052.Google Scholar
  173. Song, H./ Reed, M./ Lee, T.: “Single Molecule Electronic Devices”. In: Advanced Materials, 23: 14, 2011, S. 1583–1608.Google Scholar
  174. Strukov, D. B./ Snider, G. S./ Stewart, D. R./ Williams, R. S.: “The Missing Memristor Found”. In: Nature, 453, 2008, S. 80–83.Google Scholar
  175. Sugahara, S./ Nitta, J.: “Spin-Transistor Electronics: An Overview and Outlook”. In: Proceedings of the IEEE, 98: 12, 2010, S. 2124–2154.Google Scholar
  176. Tedde, S. F./ Kern, J./ Sterzl, T./ Furst, J./ Lugli, P./ Hayden, O.: “Fully Spray Coated Organic Photodiodes”. In: Nano Letters, 9, 2009, S. 980–983.Google Scholar
  177. Thielmann, A.: “Blockaden bei der Etablierung der Nanoelektronik”. In: TAB Brief, 35 (Büro für Technikfolgen-Abschätzung beim Deutschen Bundestag), 2009, S. 36–39.Google Scholar
  178. Thompson, S. E./ Parthasarathy, S.: “Moore’s Law: The Future of Si Microelectronics”. In: Materials Today, 9: 6, 2006, S. 20–25.Google Scholar
  179. Thunich, S./ Prechtel, L./ Spirkoska, D./ Abstreiter, G./ Fontcubertai Morral, A./ Holleitner, A. W.: “Photocurrent and Photoconductance Properties of a GaAs Nanowire”. In: Applied Physics Letters, 95, 2009, S. 083111.Google Scholar
  180. Tian, L./ Lloyd, S./ Orlando, T. P.: “Decoherence and Relaxation of a Superconducting Quantum Bit During Measurement”. In: Physical Review B, 65: 14, 2002, S. 144516.Google Scholar
  181. Tian, L./ Zoller, P.: “Quantum Computing with Atomic Josephson Junction Arrays”. In: Physical Review A, 68, 2003, S. 042321.Google Scholar
  182. Tinkham, M.: Introduction to Superconductivity:Second Edition (Dover Books on Physics), Dover: Dover Publications, 2004 (2. Aufl.).Google Scholar
  183. Toffoli, T.: Cellular Automata Machines: A New Environment for Modeling, MIT Press, 1987.Google Scholar
  184. Torres, C. M. S./ Zankovych, S./ Seekamp, J./ Kam, A. P./ Cedeno, C. C./ Hoffmann, T./ Ahopelto, J./ Reuther, F./ Pfeiffer, K./ Bleidiessel, G./ Gruetzner, G./ Maximov, M. V./ Heidari, B.: “Nanoimprint Lithography: An Alternative Nanofabrication Approach”. In: Material Science and Engineering: C, 23, 2003, S. 23–31.Google Scholar
  185. Tricarico, S./ Bilotti, F./ Vegni, L.: “Optical Cloaking with Cylindrical Plasmonic Implants” (International Conference on Electromagnetics in Advanced Applications, ICEAA’09, 2009), Torino, Italy, 2009, S. 351–354 (Tagungsband).Google Scholar
  186. Valov, I./ Waser, R./ Jameson, J./ Kozicki, M.: “Electrochemical Metallization Memories-Fundamentals, Applications, Prospects”. In: Nanotechnology, 22, 2011, S. 254003.Google Scholar
  187. Varga, E./ Orlov, A./ Niemier, M. T./ Hu, X. S./ Bernstein, G. H./ Porod, W.: “Experimental Demonstration of Fanout for Nanomagnetic Logic”. In: IEEE Transactions on Nanotechnology, 9: 6, 2010, S. 668–670.Google Scholar
  188. Waldmann, D./ Jobst, J./ Speck, F./ Seyller, T./ Krieger, M./ Weber, H. B.: “Bottom-Gated Epitaxial Graphene”. In: Nature Materials, 10: 5, 2011, S. 357–360.Google Scholar
  189. Wang, Z./ Hamasaki, K./ Kinoshita, M./ Yamashita, T./ Matsui, T./ Komiyama, B.: “Millimeter-Wave Response in NbN(g)/Al Nanobridges”. In: IEEE Transactions on Magnetics, 27: 2, 1991, S. 2720–2723.Google Scholar
  190. Wang, D./ Yu, Z./ McKernan, S./ Burke, P.: “Ultrahigh Frequency Carbon Nanotube Transistor Based on a Single Nanotube”. In: IEEE Transactions on Nanotechnology, 6: 4 2007, S. 400–403.Google Scholar
  191. Wang, Z./ Xu, H./ Zhang, Z./ Wang, S./ Ding, L./ Zeng, Q./ Yang, L./ Pei, T./ Liang, X./ Gao, M./ Peng, L.: “Growth and Performance of Yttrium Oxide as an Ideal High-Gate Dielectric for Carbon-Based Electronics”. In: Nano Letters, 10: 6, 2010, S. 2024–2030.Google Scholar
  192. Waser, R.: Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices, Weinheim, Wiley-VCH, 2012.Google Scholar
  193. Waser, R./ Aono, M.: “Nanoionics-Based Resistive Switching Memories”. In: Nature Materials, 6: 11, 2007, S. 833–840.Google Scholar
  194. Waser, R./ Dittmann, R./ Staikov, G./ Szot, K.: “Redox-Based Resistive Switching Memories-Nanoionic Mechanisms, Prospects, and Challenges”. In: Advanced Materials, 21: 25-26, 2009, S. 2632–2663.Google Scholar
  195. Weber, W. M./ Geelhaar, L./ Graham, A. P./ Unger, E./ Duesberg, G. S./ Liebau, M./ Pamler, W./ Chèze, C./ Riechert, H./ Lugli, P./ Kreupl, F.: “Silicon-Nanowire Transistors with Intruded Nickel-Silicide Contacts”. In: Nano Letters, 6: 12, 2006, S. 2660–2666.Google Scholar
  196. Werner, R. F.: “Aspects of Nonlinearity in Quantum Mechancs” (Proc. Conference on Nonlinear Dynamics of Electronic Systems, NDES 2012, Wolfenbüttel), Wolfenbüttel, 2012 (Manuskript).Google Scholar
  197. Wernersson, L. E./ Thelander, C./ Lind, E./ Samuelson, L.: “III-V Nanowires-Extending a Narrowing Road”. In: Proceedings of the IEEE, 98: 12, 2010, S. 2047–2060.Google Scholar
  198. Weste, N./ Harris, D.: CMOS VLSI DesignA Circuits and Systems Perspective, Boston: Addison Wesley, 2005 (3. Aufl.).Google Scholar
  199. Wiedemann, W. et al.: “Nanostructured Interfaces in Polymer Solar Cells”. In: Applied Physics Letters, 96: 26, 2010, S. 263109-1-263109-3.Google Scholar
  200. Williams, R.: “How We Found The Missing Memristor”. In: Spectrum, IEEE, 45: 12, 2008, S. 28–35.Google Scholar
  201. Wolf, S. A./ Awschalom, D. D./ Buhrman, R. A./ Daughton, J. M./ Molnar, S. V./ Roukes, M. L./ Chtchelkanova, A. Y./ Treger, D. M.: “Spintronics: A Spin-Based Electronics Vision for the Future”. In: Science, 294, 2001, S. 1488–1495.Google Scholar
  202. Xia, Q./ Robinett, W./ Cumbie, M./ Banerjee, N./ Cardinali, T./ Yang, J./ Wu, W./ Li, X./ Tong, W./ Strukov, D. et al.: “Memristor — CMOS Hybrid Integrated Circuits for Reconfigurable Logic”. In: Nano Letters, 9: 10, 2009, S. 3640–3645.Google Scholar
  203. Xia, L./ Boos, J./ Bennett, B./ Ancona, M./ Del Alamo, J.: “Hole Mobility Enhancement in In0. 41Ga0. 59Sb Quantum-Well Field-Effect Transistors”. In: Applied Physics Letters, 98: 5, 2011, S. 053505-053505-3.Google Scholar
  204. Xiang, J./ Lu, W./ Hu, Y./ Wu, Y./ Yan, H./ Lieber, C.: “Ge/Si Nanowire Heterostructures as High-Performance Field-Effect Transistors”. In: Nature, 441, 2006, S. 489–493.Google Scholar
  205. Yan, H./ Yang, P.: “Semiconductor Nanowires: Functional Building Blocks for Nanotechnology”. In: The Chemistry of Nanostructured Materials, River Edge, NJ: World Scientific, 2004.Google Scholar
  206. Yordanov, H./ Russer, P.: Area-Efficient Integrated Antennas for Inter-Chip Communication (Proceedings of the 40th European Microwave Conference, Paris), Paris, 2010 (Manuskript).Google Scholar
  207. Zhang, Q./ Zhao, W./ Seabaugh, A.: “Low-Subthreshold-Swing Tunnel Transistors”. In: IEEE Electron Device Letters, 27: 4, 2006, S. 297–300.zbMATHGoogle Scholar
  208. Zhang, G./ van Roosmalen, A. (Hrsg.): More than Moore, Berlin, Heidelberg, New York: Springer Verlag 2009.Google Scholar
  209. Zhirnov, V./ Cavin, R./ Leeming, G./ Galatsis, K.: “An Assessment of Integrated Digital Cellular Automata Architectures”. In: Computer, 41: 1, 2008, S. 38–44.Google Scholar
  210. Zhirnov, V. V./ Meade, R./ Cavin, R. K./ Sandhu, G.: “Scaling Limits of Resistive Memories”. In: Nanotechnology, 22: 25, 2011, S. 254027.Google Scholar
  211. Zhou, W./ Rutherglen, C./ Burke, P. J.: “Wafer Scale Synthesis of Dense Aligned Arrays of Single-Walled Carbon Nanotubes”. In: Nano Research, 1: 2, 2008, S. 158–165.Google Scholar
  212. Zia, R./ Schuller, J./ Chandran, A./ Brongersma, M.: “Plasmonics: The Next Chip-Scale Technology”. In: Materials Today, 9: 7–8, 2006, S. 20–27.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

There are no affiliations available

Personalised recommendations