Analyzing Clusters and Constellations from Untwisting Shortened Links on Twitter Using Conceptual Graphs

  • Emma L. Tonkin
  • Heather D. Pfeiffer
  • Gregory J. L. Tourte
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7735)


The analysis of big data, although potentially a very rewarding task, can present difficulties due to the complexity inherent to such datasets. We suggest that conceptual graphs provide a mechanism for representing knowledge about a domain that can also be used as a useful scaffold for big data analysis. Conceptual graphs may be used as a means to collaboratively build up a robust model forming the skeleton of a data analysis project. This paper describes a case study in which conceptual graphs were used to underpin an exploration of a corpus of tweets relating to the Transportation Security Administration (TSA). Through this process we will demonstrate the emerging model built up of the data landscape involved and of the business structures that underlie the technical frameworks relied upon by microblogging software.


Conceptual Graphs Twitter Microblogging Models 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bollen, J., Mao, H., Zeng, X.: Twitter mood predicts the stock market. Journal of Computational Science 2(1), 1–8 (2011), CrossRefGoogle Scholar
  2. 2.
    Cao, T.H.: Fuzzy conceptual graphs for the semantic web. In: Proceedings of 2001 BISC International Workshop on Fuzzy Logic and the Internet, FLINT 2001, Berkeley, CA, USA (August 2001)Google Scholar
  3. 3.
    Carmody, T.: A Tangled Web of Shortened Links. A study of link shortening reveals hidden strands of the Web (2011), (retrieved May 16, 2011)
  4. 4.
    Carpenter, S.: Developing a measure to elicit and compare mental models of processes. Tech. rep., The University of Alabama in Huntsville (2007)Google Scholar
  5. 5.
    Daraselia, N., Yuryev, A., Egorov, S., Novichkova, S., Nikitin, A., Mazo, I.: Extracting human protein interactions from medline using a full-sentence parser. Bioinformatics 20(5), 604–611 (2004), CrossRefGoogle Scholar
  6. 6.
    Davis, R., Shrobe, H.E., Szolovits, P.: What is a knowledge representation? AI Magazine 14(1), 17–33 (1993), Google Scholar
  7. 7.
    De Longueville, B., Smith, R.S., Luraschi, G.: OMG, from here, I can see the flames!: a use case of mining location based social networks to acquire spatio-temporal data on forest fires. In: Proceedings of the 2009 International Workshop on Location Based Social Networks, LBSN 2009, pp. 73–80. ACM, New York (2009), CrossRefGoogle Scholar
  8. 8. The URL wrapper (2012), (retrieved May 15, 2012)
  9. 9.
    Gelperin, D.: Exploring agile. In: Proceedings of the 2008 international workshop on Scrutinizing agile practices or shoot-out at the agile corral, APOS 2008, pp. 1–3. ACM, New York (2008), CrossRefGoogle Scholar
  10. 10.
    Montes-y-Gómez, M., Gelbukh, A., López-López, A.: Detecting Deviations in Text Collections: An Approach Using Conceptual Graphs. In: Coello Coello, C.A., de Albornoz, Á., Sucar, L.E., Battistutti, O.C. (eds.) MICAI 2002. LNCS (LNAI), vol. 2313, pp. 176–184. Springer, Heidelberg (2002), CrossRefGoogle Scholar
  11. 11.
    Huberman, B.A., Romero, D.M., Wu, F.: Social networks that matter: Twitter under the microscope. CoRR abs/0812.1045 (2008)Google Scholar
  12. 12.
    Kwak, H., Lee, C., Park, H., Moon, S.: What is twitter, a social network or a news media? In: Proceedings of the 19th International Conference on World Wide Web, WWW 2010, pp. 591–600. ACM, New York (2010), CrossRefGoogle Scholar
  13. 13.
    Lane, P.C.R., Gobet, F.: A theory-driven testing methodology for developing scientific software. Journal of Experimental & Theoretical Artificial Intelligence 24(4), 421–456 (2012), CrossRefGoogle Scholar
  14. 14.
    Lerman, K., Ghosh, R.: Information contagion: an empirical study of the spread of news on digg and twitter social networks. CoRR abs/1003.2664 (2010)Google Scholar
  15. 15.
    Maurer, F., Martel, S.: Extreme programming. rapid development for web-based applications. IEEE Internet Computing 6(1), 86–90 (2002)CrossRefGoogle Scholar
  16. 16.
    Mishne, G.: Source code retrieval using conceptual graphs. Master of logic thesis, Institute for Logic, Language and Computation, University of Amsterdam (2003)Google Scholar
  17. 17.
    Moulin, B.: Temporal contexts for discourse representation: An extension of the conceptual graph approach. Applied Intelligence 7, 227–255 (1997), MathSciNetCrossRefGoogle Scholar
  18. 18.
    Oricchio, R.: Is Twitter A Social Network (2010), (retrieved September 16, 2012)
  19. 19.
    Owen, R., Horváth, I.: Towards product-related knowledge asset warehousing in enterprises. In: Proceedings of the Fourth International Symposium on Tools and Methods of Competitive Engineering, pp. 155–170. HUST Press (2002)Google Scholar
  20. 20.
    Pak, A., Paroubek, P.: Twitter as a corpus for sentiment analysis and opinion mining. In: Chair, N.C.C., Choukri, K., Maegaard, B., Mariani, J., Odijk, J., Piperidis, S., Rosner, M., Tapias, D. (eds.) Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC 2010), European Language Resources Association (ELRA), Valletta, Malta (May 2010)Google Scholar
  21. 21.
    Paul, M., Dredze, M.: You are what you tweet: Analyzing twitter for public health. In: International AAAI Conference on Weblogs and Social Media (2011),
  22. 22.
    Perer, A., Shneiderman, B.: Systematic yet flexible discovery: guiding domain experts through exploratory data analysis. In: Proceedings of the 13th International Conference on Intelligent User Interfaces, IUI 2008, pp. 109–118. ACM, New York (2008), CrossRefGoogle Scholar
  23. 23.
    Petrović, S., Osborne, M., Lavrenko, V.: Streaming first story detection with application to twitter. In: Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics, HLT 2010, pp. 181–189. Association for Computational Linguistics, Stroudsburg (2010), Google Scholar
  24. 24.
    Pfeiffer, H.D.: The Effect of Data Structures Modifications on Algorithms for Reasoning Operations Using a Conceptual Graphs Knowledge Base. Dissertation, New Mexico State University (December 2007)Google Scholar
  25. 25.
    Pfeiffer, H.D., Hartley, R.T.: Temporal, spatial, and constraint handling in the conceptual programming environment, cp. J. Exp. Theor. Artif. Intell. 4(2), 167–182 (1992), CrossRefGoogle Scholar
  26. 26.
    Phelan, O., McCarthy, K., Smyth, B.: Using twitter to recommend real-time topical news. In: Proceedings of the Third ACM Conference on Recommender Systems, RecSys 2009, pp. 385–388. ACM, New York (2009), CrossRefGoogle Scholar
  27. 27.
    de Quincey, E., Kostkova, P.: Early Warning and Outbreak Detection Using Social Networking Websites: The Potential of Twitter. In: Kostkova, P. (ed.) eHealth 2009. LNICST, vol. 27, pp. 21–24. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  28. 28.
    Ribière, M., Matta, N., Cointe, C.: A proposition for managing project memory in concurrent engineering. In: International Conference on Computational Intelligence and Multimedia Applications, ICCIMA 1998 (February 1998)Google Scholar
  29. 29.
    Rodrigues, T., Benevenuto, F., Cha, M., Gummadi, K., Almeida, V.: On word-of-mouth based discovery of the web. In: Proceedings of the 2011 ACM SIGCOMM Conference on Internet Measurement Conference, IMC 2011, pp. 381–396. ACM, New York (2011), CrossRefGoogle Scholar
  30. 30.
    Romero, D.M., Meeder, B., Kleinberg, J.: Differences in the mechanics of information diffusion across topics: idioms, political hashtags, and complex contagion on twitter. In: Proceedings of the 20th International Conference on World Wide Web, WWW 2011, pp. 695–704. ACM, New York (2011), CrossRefGoogle Scholar
  31. 31.
    Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes twitter users: real-time event detection by social sensors. In: Proceedings of the 19th International Conference on World Wide Web, WWW 2010, pp. 851–860. ACM, New York (2010), CrossRefGoogle Scholar
  32. 32.
    Santoro, N., Quattrociocchi, W., Flocchini, P., Casteigts, A., Amblard, F.: Time-varying graphs and social network analysis: Temporal indicators and metrics. CoRR abs/1102.0629 (2011)Google Scholar
  33. 33.
    Schank, R.C., Abelson, R.P.: Scripts, Plans, Goals and Understanding: an Inquiry into Human Knowledge Structures. Lawrence Erlbaum, Hillsdale (1977)zbMATHGoogle Scholar
  34. 34.
    Shehata, S., Karray, F., Kamel, M.: Enhancing text retrieval performance using conceptual ontological graph. In: Sixth IEEE International Conference on Data Mining Workshops, ICDM Workshops 2006, pp. 39–44 (December 2006)Google Scholar
  35. 35.
    Shekar, C., Wakade, S., Liszka, K., Chan, C.C.: Mining pharmaceutical spam from twitter. In: 2010 10th International Conference on Intelligent Systems Design and Applications (ISDA), pp. 813–817 (November-December 2010)Google Scholar
  36. 36.
    Shekhar, S., Oliver, D.: Computational modeling of spatio-temporal social networks: A time-aggregated graph approach. In: Proceedings of the 2010 Specialist Meeting on Spatio-Temporal Constraints on Social Networks (2010),
  37. 37.
    Sowa, J.F.: Conceptual structures: information processing in mind and machine. Addison-Wesley Longman Publishing Co., Inc., Boston (1984)Google Scholar
  38. 38.
    Spasic, I., Ananiadou, S., McNaught, J., Kumar, A.: Text mining and ontologies in biomedicine: Making sense of raw text. Briefings in Bioinformatics 6(3), 239–251 (2005), CrossRefGoogle Scholar
  39. 39.
    Sullivan, J.: A tale of two microblogs in china. Media, Culture & Society 34(6), 773–783 (2012), CrossRefGoogle Scholar
  40. 40.
    Tang, J., Musolesi, M., Mascolo, C., Latora, V.: Temporal distance metrics for social network analysis. In: Proceedings of the 2nd ACM Workshop on Online Social Networks, WOSN 2009, pp. 31–36. ACM, New York (2009), CrossRefGoogle Scholar
  41. 41.
    Thomas, K., Grier, C., Song, D., Paxson, V.: Suspended accounts in retrospect: an analysis of twitter spam. In: Proceedings of the 2011 ACM SIGCOMM Conference on Internet Measurement Conference, IMC 2011, pp. 243–258. ACM, New York (2011), CrossRefGoogle Scholar
  42. 42. Url shorteners (2012), (retrieved May 15, 2012)

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Emma L. Tonkin
    • 1
  • Heather D. Pfeiffer
    • 2
  • Gregory J. L. Tourte
    • 3
  1. 1.UKOLNUniversity of BathBathUK
  2. 2.Akamai Physics, Inc.New MexicoUSA
  3. 3.School of Geographical SciencesThe University of BristolBristolUK

Personalised recommendations