A Model to Compare and Manipulate Situations Represented as Semantically Labeled Graphs

  • Michał K. Szczerbak
  • Ahmed Bouabdallah
  • François Toutain
  • Jean-Marie Bonnin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7735)


In our previous work we have introduced a novel social media that performs collaborative filtering on situations. This enhances user situation awareness with a collaborative effort to learn about importance of situations. In this paper we focus on defining a conceptual graph-based model used to represent situations in our system, so that it would (1) be consistent with existing formal definitions of situation, and (2) enable logical manipulations on situations, namely their detection and semantic generalization, which we employ in the system. In particular, we show how the latter can be accomplished thanks to situation lattices, which we adapt for the model.


Situation awareness situation theory conceptual graphs semantics specialization / generalization graph hierarchies situation lattices 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anagnostopoulos, C.B., Ntarladimas, Y., Hadjiefthymiades, S.: Reasoning about Situation Similarity. In: International IEEE Conference on Intelligent Systems, pp. 109–114 (2006)Google Scholar
  2. 2.
    Anagnostopoulos, C.B., Ntarladimas, Y., Hadjiefthymiades, S.: Situation Awareness: Dealing with Vague Context. In: ACS/IEEE International Conference on Pervasive Services, pp. 131–140 (2006)Google Scholar
  3. 3.
    Barwise, J., Perry, J.: Situations and Attitudes. Bradford Books, The MIT Press (1983) ISBN 0-262-02189-7Google Scholar
  4. 4.
    Cooper, R., Kamp, H.: Negation in Situation Semantics and Discourse Representation Theory. In: Situation Theory and Its Applications, vol. 2. Stanford University (1991)Google Scholar
  5. 5.
    Costa, P.D., Guizzardi, G., Almeida, J.P.A., Pires, L.F., van Sinderen, M.: Situations in Conceptual Modeling of Context. In: 10th IEEE International Enterprise Distributed Object Computing Conference Workshops, p. 6 (2006)Google Scholar
  6. 6.
    Croitoru, M., Hu, B., Dashmapatra, S., Lewis, P., Dupplaw, D., Xiao, L.: A Conceptual Graph Based Approach to Ontology Similarity Measure. In: Priss, U., Polovina, S., Hill, R. (eds.) ICCS 2007. LNCS (LNAI), vol. 4604, pp. 154–164. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Delaveau, L., Loulier, B., Matson, E.T., Dietz, E.: A vector-space retrieval system for contextual awareness. In: IEEE International Multi-Disciplinary Conference on Cognitive Metheods in Situation Awareness and Decision Support, pp. 162–165 (2012)Google Scholar
  8. 8.
    Devlin, K.J.: Situations as Mathematical Abstractions. In: Situation Theory and Its Applications, vol. 2. Stanford University (1991)Google Scholar
  9. 9.
    Dey, A.K.: Providing architectural support for building context-aware applications. PhD thesis, Georgia Institute of Technology (2000)Google Scholar
  10. 10.
    Ellis, G., Levinson, R.: Multi-Level Hierarchical Retrieval. Knowledge-Based Systems, Conceptual Graphs Special Issue 5, 233–244 (1992)Google Scholar
  11. 11.
    Endsley, M.R.: Toward a Theory of Situation Awareness in Dynamic Systems. Human factors 37, 32–64 (1995)CrossRefGoogle Scholar
  12. 12.
    Forgy, C.L.: Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern Match Problem. Artificial Intelligence 19, 17–37 (1982)CrossRefGoogle Scholar
  13. 13.
    Gandon, F.: Graphes RDF et leur Manipulation pour la Gestion de Connaissances, Ch. 4: Graphes comme espaces métriques, HdR, Nice Sophia-Antipolis (2008)Google Scholar
  14. 14.
    Jiang, X., Bunke, H.: Graph Matching. SCI, vol. 73, pp. 149–173 (2008)Google Scholar
  15. 15.
    Laudy, C., Ganascia, J.G., Sedogbo, C.: High-level Fusion based on Conceptual Graphs. In: 10th International Conference on Information Fusion, pp. 1–8 (2007)Google Scholar
  16. 16.
    Mechkour, S.: Overview of Situation Theory and its application in modeling context, Seminar Paper, University of Fribourg (2007)Google Scholar
  17. 17.
    Meissen, U., Pfennigschmidt, S., Voisard, A., Wahnfried, T.: Context- and Situation-Awareness in Information Logistics. In: Lindner, W., Fischer, F., Türker, C., Tzitzikas, Y., Vakali, A.I. (eds.) EDBT 2004. LNCS, vol. 3268, pp. 335–344. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Montes-y-Gómez, M., Gelbukh, A., López-López, A.: Comparison of Conceptual Graphs. In: Cairó, O., Cantú, F.J. (eds.) MICAI 2000. LNCS, vol. 1793, pp. 548–556. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  19. 19.
    Montes-y-Gómez, M., Gelbukh, A., López-López, A., Baeza-Yates, R.: Flexible Comparison of Conceptual Graphs. In: Mayr, H.C., Lazanský, J., Quirchmayr, G., Vogel, P. (eds.) DEXA 2001. LNCS, vol. 2113, pp. 102–111. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  20. 20.
    Mugnier, M.L.: On Generalization / Specialization for Conceptual Graphs. Journal of Experimental & Theoretical Artificial Intelligence 7, 325–344 (1993)CrossRefGoogle Scholar
  21. 21.
    Padovitz, A., Loke, S.W., Zaslavsky, A.: Towards a Theory of Context Spaces. In: 2nd IEEE Conference on Pervasive Computing and Communications Workshops, pp. 38–42 (2004)Google Scholar
  22. 22.
    Poole, J., Campbell, J.A.: A Novel Algorithm for Matching Conceptual and Related Graphs. In: Ellis, G., Rich, W., Levinson, R., Sowa, J.F. (eds.) ICCS 1995. LNCS, vol. 954, pp. 293–307. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  23. 23.
    Sowa, J.F.: Conceptual Graphs. Foundations of Artificial Intelligence, vol. 3, pp. 213–237 (2008)Google Scholar
  24. 24.
    Szczerbak, M.K., Toutain, F., Bouabdallah, A., Bonnin, J.M.: Collaborative Context Experience in a Phonebook. In: 26th IEEE International Conference on Advanced Information Networking and Applications Workshops, pp. 1275–1281 (2012)Google Scholar
  25. 25.
    Szczerbak, M.K., Bouabdallah, A., Toutain, F., Bonnin, J.M.: Generalizing Contextual Situations. In: 6th IEEE International Conference on Semantic Computing (to be published, 2012)Google Scholar
  26. 26.
    Wang, X.H., Gu, T., Zhang, D.Q., Pung, H.K.: Ontology Based Context Modeling and Reasoning using OWL. In: 2nd IEEE Annual Conference on Pervasive Computing and Communications Workshops, pp. 18–22 (2004)Google Scholar
  27. 27.
    Yau, S.S., Liu, J.: Hierarchical Situation Modeling and Reasoning for Pervasive Computing. In: 4th IEEE Workshop on Software Technologies for Future Embedded and Ubiquitous Systems, pp. 5–10 (2006)Google Scholar
  28. 28.
    Ye, J., Coyle, L., Dobson, S., Nixon, P.: Using Situation Lattices to Model and Reason about Context. In: 4th International Workshop on Modeling and Reasoning in Context, pp. 1–12 (2007)Google Scholar
  29. 29.
    Zhong, J., Zhu, H., Li, J., Yu, Y.: Conceptual Graph Matching for Semantic Search. In: Priss, U., Corbett, D.R., Angelova, G. (eds.) ICCS 2002. LNCS (LNAI), vol. 2393, pp. 92–106. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Michał K. Szczerbak
    • 1
    • 2
  • Ahmed Bouabdallah
    • 2
  • François Toutain
    • 1
  • Jean-Marie Bonnin
    • 2
  1. 1.Orange LabsFrance Telecom R&DLannionFrance
  2. 2.Telecom BretagneInstitut Mînes-TelecomCesson-SévignéFrance

Personalised recommendations