Skip to main content

Spectral Properties of Piezoelectric Bodies with Surface Effects

Part of the Advanced Structured Materials book series (STRUCTMAT,volume 30)

Abstract

We consider the problems of natural oscillations of nanosize piezoelectric bodies taking into account surface stresses and surface electric charges. The spectral properties of the boundary-value problems are determined by the combination of approaches developed earlier for piezoelectric bodies and for elastic bodies with surface stresses. We formulate theorems on the changes of the natural frequencies under the changes of boundary conditions and material characteristics. We also discuss finite element approaches for determination of the natural frequencies, the resonance and antiresonance frequencies of nanosize piezoelectric bodies. The paper provides the results of finite element computations of the model problems that illustrate some of the observed trends for the frequency changes.

Keywords

  • Dielectric Permittivity
  • Surface Effect
  • Surface Stress
  • Dielectric Film
  • Natural Oscillation

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-35783-1_9
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   99.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-35783-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   129.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Duan, H.L., Wang, J., Huang, Z.P., Karihaloo, B.L.: Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress. J. Mech. Phys. Solids 53, 1574–1596 (2005)

    CrossRef  Google Scholar 

  2. Duan, H.L., Wang, J., Karihaloo, B.L., Huang, Z.P.: Nanoporous materials can be made stiffer than non-porous counterparts by surface modifcation. Acta mater. 54, 2983–2990 (2006)

    CrossRef  CAS  Google Scholar 

  3. Jing, G.Y., Duan, H.L., Sun, X.M., et al.: Surface effects on elastic properties of silver nanowires: contact atomic-force microscopy, Phys. Rev. B 73, 235409-1–235409-6 (2006)

    Google Scholar 

  4. Belokon, A.V., Vorovich, I.I.: Some mathematical problems of the theory of electroelastic solids, In: Current problems in the mechanics of deformable media. Izv. Dnepropetr. Gos. Univ., Dnepropetrovsk (1979)

    Google Scholar 

  5. Altenbach, H., Eremeyev, V.A., Lebedev, L.P.: On the existence of solution in the linear elasticity with surface stresses, Z. Angew. Math. Mech. 90(3), 231–240 (2010)

    Google Scholar 

  6. Altenbach, H., Eremeyev, V.A., Lebedev, L.P.: On the spectrum and stiffness of an elastic body with surface stresses, Z. Angew. Math. Mech. 91(9), 699–710 (2011)

    Google Scholar 

  7. Belokon, A.V., Nasedkin, A.V.: Some properties of the natural frequencies of electroelastic bodies of bounded dimentions. J. Appl. Math. Mech. (PMM) 60, 145–152 (1996)

    CrossRef  Google Scholar 

  8. Riesz, F., Szokefalvi-Nagy, B.: Functional Analysis. Dover, New York (1990)

    Google Scholar 

  9. Mikhlin, S.G.: Variational Methods in Mathematical Physics. Pergamon Press, Oxford (1964)

    Google Scholar 

  10. Bathe, K.J.: Finite Element Procedure. Prentice-Hall, Englewood Cliffs, NJ (1996)

    Google Scholar 

  11. Zienkewicz, O.C., Morgan, K.: Finite Elements and Approximation. Wiley, NY (1983)

    Google Scholar 

  12. Dieulesaint, E., Royer, D.: Ondes elastiques dans les solides. Application au Traitement du Signal. Masson, Paris (1974)

    Google Scholar 

  13. Iovane, G., Nasedkin, A.V.: Some theorems about spectrum and finite element approach for eigenvalue problems for elastic bodies with voids. Comput. Math. Appl. 53, 789–802 (2007)

    CrossRef  Google Scholar 

  14. Iovane, G., Nasedkin, A.V.: Modal analysis of piezoelectric bodies with voids. I. Mathematical approaches, Appl. Math. Model. 34(1), 60–71 (2010)

    Google Scholar 

  15. G. Iovane, A.V. Nasedkin, Modal analysis of piezoelectric bodies with voids. II. Finite element simulation, Appl. Math. Model. 34(1), 47–59 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey V. Nasedkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nasedkin, A.V., Eremeyev, V.A. (2013). Spectral Properties of Piezoelectric Bodies with Surface Effects. In: Altenbach, H., Morozov, N. (eds) Surface Effects in Solid Mechanics. Advanced Structured Materials, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35783-1_9

Download citation