Surface Effects in Solid Mechanics pp 105-121

Part of the Advanced Structured Materials book series (STRUCTMAT, volume 30) | Cite as

Spectral Properties of Piezoelectric Bodies with Surface Effects

Chapter

Abstract

We consider the problems of natural oscillations of nanosize piezoelectric bodies taking into account surface stresses and surface electric charges. The spectral properties of the boundary-value problems are determined by the combination of approaches developed earlier for piezoelectric bodies and for elastic bodies with surface stresses. We formulate theorems on the changes of the natural frequencies under the changes of boundary conditions and material characteristics. We also discuss finite element approaches for determination of the natural frequencies, the resonance and antiresonance frequencies of nanosize piezoelectric bodies. The paper provides the results of finite element computations of the model problems that illustrate some of the observed trends for the frequency changes.

References

  1. 1.
    Duan, H.L., Wang, J., Huang, Z.P., Karihaloo, B.L.: Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress. J. Mech. Phys. Solids 53, 1574–1596 (2005)CrossRefGoogle Scholar
  2. 2.
    Duan, H.L., Wang, J., Karihaloo, B.L., Huang, Z.P.: Nanoporous materials can be made stiffer than non-porous counterparts by surface modifcation. Acta mater. 54, 2983–2990 (2006)CrossRefGoogle Scholar
  3. 3.
    Jing, G.Y., Duan, H.L., Sun, X.M., et al.: Surface effects on elastic properties of silver nanowires: contact atomic-force microscopy, Phys. Rev. B 73, 235409-1–235409-6 (2006)Google Scholar
  4. 4.
    Belokon, A.V., Vorovich, I.I.: Some mathematical problems of the theory of electroelastic solids, In: Current problems in the mechanics of deformable media. Izv. Dnepropetr. Gos. Univ., Dnepropetrovsk (1979)Google Scholar
  5. 5.
    Altenbach, H., Eremeyev, V.A., Lebedev, L.P.: On the existence of solution in the linear elasticity with surface stresses, Z. Angew. Math. Mech. 90(3), 231–240 (2010)Google Scholar
  6. 6.
    Altenbach, H., Eremeyev, V.A., Lebedev, L.P.: On the spectrum and stiffness of an elastic body with surface stresses, Z. Angew. Math. Mech. 91(9), 699–710 (2011)Google Scholar
  7. 7.
    Belokon, A.V., Nasedkin, A.V.: Some properties of the natural frequencies of electroelastic bodies of bounded dimentions. J. Appl. Math. Mech. (PMM) 60, 145–152 (1996)CrossRefGoogle Scholar
  8. 8.
    Riesz, F., Szokefalvi-Nagy, B.: Functional Analysis. Dover, New York (1990)Google Scholar
  9. 9.
    Mikhlin, S.G.: Variational Methods in Mathematical Physics. Pergamon Press, Oxford (1964)Google Scholar
  10. 10.
    Bathe, K.J.: Finite Element Procedure. Prentice-Hall, Englewood Cliffs, NJ (1996)Google Scholar
  11. 11.
    Zienkewicz, O.C., Morgan, K.: Finite Elements and Approximation. Wiley, NY (1983)Google Scholar
  12. 12.
    Dieulesaint, E., Royer, D.: Ondes elastiques dans les solides. Application au Traitement du Signal. Masson, Paris (1974)Google Scholar
  13. 13.
    Iovane, G., Nasedkin, A.V.: Some theorems about spectrum and finite element approach for eigenvalue problems for elastic bodies with voids. Comput. Math. Appl. 53, 789–802 (2007)CrossRefGoogle Scholar
  14. 14.
    Iovane, G., Nasedkin, A.V.: Modal analysis of piezoelectric bodies with voids. I. Mathematical approaches, Appl. Math. Model. 34(1), 60–71 (2010)Google Scholar
  15. 15.
    G. Iovane, A.V. Nasedkin, Modal analysis of piezoelectric bodies with voids. II. Finite element simulation, Appl. Math. Model. 34(1), 47–59 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Southern Federal University Rostov on DonRussia
  2. 2.Institut für Mechanik, Fakultät für MaschinenbauOtto-von-Guericke-Universität MagdeburgMagdeburgGermany
  3. 3.South Scientific Center of RASci and South Federal UniversityRostov on DonRussia

Personalised recommendations