Skip to main content

On the Isotropic Elastic Properties of Graphene Crystal Lattice

Part of the Advanced Structured Materials book series (STRUCTMAT,volume 30)

Abstract

Graphene is a monolayer of carbon atoms packed into a two-dimensional honeycomb lattice. This allotrope can be considered as mother of all graphitic forms of carbon. The elastic in-plane properties of graphene are studied. Nowadays graphene often is simulated as a two-dimensional elastic continuum. It is shown in this work that if this continuum has the same symmetric properties as graphene crystal, then the continuum is isotropic while the small deformations are considered. A simple and mathematically rigorous proof of this statement is given. The proof is based on the orthogonal transformation of the coordinates of the continual stress and strain tensors and comparison of the elastic tensor components before and after transformation.

Keywords

  • Elasticity Tensor
  • Honeycomb Structure
  • Effective Continuum
  • Single Carbon Layer
  • Isotropic Elastic Property

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-35783-1_3
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   99.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-35783-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   129.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 1

References

  1. Anton, H.: Elementary Linear Algebra. Wiley, New York (1973)

    Google Scholar 

  2. Ayres, F.: Matrices Schaum’s Outlines. McGraw-Hill, New York (1962)

    Google Scholar 

  3. Blakslee, O.: Elastic constants of compression-annealed pyrolytic graphite. J. Appl. Phys. 41(8), 3373–3383 (1970)

    CrossRef  CAS  Google Scholar 

  4. Boehm, H.P., Setton, R., Stumpp, E.: Nomenclature and terminology of graphite intercalation compounds. Pure Appl. Chem. 66(9), 1893–1901 (1994)

    CrossRef  CAS  Google Scholar 

  5. Bosak, A., Krisch, M., Mohr, M., Maultzsch, J., Thomsen, C.: Elasticity of single-crystalline graphite: inelastic x-ray scattering study. Phys. Rev. B 75(15), 153408 (2007)

    Google Scholar 

  6. El-Sayed, F.A., Jones, R., Burgess, I.: A theoretical approach to the deformation of honeycomb based composite materials. Composites 10(4), 209–214 (1979)

    CrossRef  Google Scholar 

  7. Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)

    CrossRef  CAS  Google Scholar 

  8. Gibson, L.J., Ashby, M.F., Schajer, G.S., Robertson, C.I.: The mechanics of two-ddimensional cellular materials. In: Proc. R. Soc. Lond. A Math. Phys. Sci. 382(1782), 25–42 (1982)

    Google Scholar 

  9. Gillis, P.: Calculating the elastic constants of graphite. Carbon 22(4–5), 387–391 (1984)

    CrossRef  CAS  Google Scholar 

  10. Masters, I., Evans, K.: Models for the elastic deformation of honeycombs. Compos. Struct. 35(4), 403–422 (1996)

    CrossRef  Google Scholar 

  11. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)

    CrossRef  CAS  Google Scholar 

  12. Nowacki, W.: Teoria Sprezystosci. Panstwowe Wydawnictwo Naukowe, Warszawa (1970)

    Google Scholar 

  13. Ogden, R.: Non-linear Elastic Deformations. Dover Publications, Mineola NY (1984)

    Google Scholar 

  14. Mouras, S., Hamm, A., Djurado, D., Cousseins, J.-C.: Synthesis of first stage graphite intercalation compounds with fluorides. Revue de Chimie Minerale 24(5), 572–582 (1987)

    Google Scholar 

  15. Slawinski, M.: Waves and Rays in Elastic Continua. World Scientific Publishing Co Pte Ltd, Singapore (2010)

    Google Scholar 

  16. Sneddon, I., Berry, D.: Classical Theory of Elasticity. Handbuch der Physik. Springer, Berlin (1958)

    Google Scholar 

  17. Zhang, J., Ashby, M.: The out-of-plane properties of honeycombs. Int. J. Mech. Sci. 34(6), 475–489 (1992)

    CrossRef  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of MINILUBES (FP7 Marie Curie ITN network 216011-2) by the European Commission and Russian Foundation for Basic Research (grant 12-01-00521-a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor E. Berinskii .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Berinskii, I.E., Borodich, F.M. (2013). On the Isotropic Elastic Properties of Graphene Crystal Lattice. In: Altenbach, H., Morozov, N. (eds) Surface Effects in Solid Mechanics. Advanced Structured Materials, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35783-1_3

Download citation