Skip to main content

Buckling of a Supported Annular Plate with a Non-Euclidean Metric

  • 1497 Accesses

Part of the Advanced Structured Materials book series (STRUCTMAT,volume 30)

Abstract

To create a new surface in a solid or a liquid material, energy needs to be spent. On the atomistic level dangling bonds are formed, which tend to be reconstructed accompanied by an excess surface energy. For thin structures like graphene this energy can change the global shape of the structure drastically. There are also examples of such a behaviour of thin structures in our every day’s life. Considering for example the stretching of pliable plastic (garbage bag) past the yield point [9, 14], or the effect of different growth in leaves [6]. In both cases the change of the bonding configuration leads to an expanding edge and/or to wrinkled equilibrium configurations, which are optimal from an energetic point of view. In this work the effect of a free edge on the global behaviour of a circular graphene patch is studied with an atomistic and a continuum mechanics approach.

Keywords

  • Graphene Patches
  • Edge Stress
  • Buckled Configuration
  • Edge Energy
  • Zigzag Part

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-35783-1_12
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   99.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-35783-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   129.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Ascher, U., Christiansen, J., Russell, R.D.: A collocation solver for mixed order systems of boundary value problems. Math. Comp. 33, 659–679 (1979)

    CrossRef  Google Scholar 

  2. Audoly, B., Pomeau, Y.: Elasticity and Geometry: From Hair Curls to the Nonlinear Response of Shells, p. 600. Oxford University Press, Oxford (2010)

    Google Scholar 

  3. Brenner, D.W., Shenderova, O.A., Harrison, J.A., Stuart, S.J., Ni, B., Sinnott, S.B.: A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys. Condens. Matter 14, 783 (2002)

    Google Scholar 

  4. Fung, Y.C.: Foundations of Solid Mechanics, p. 525. Prentice Hall, Englewood Cliffs (1965)

    Google Scholar 

  5. Jun, S.: Density-functional study of edge stress in graphene. Phys. Rev. B. 78, 073405 (2008)

    CrossRef  Google Scholar 

  6. Liang, H., Mahadevan, L.: The shape of a long leaf. Proc. Natl. Acad. Sci. U.S.A. 106, 22049–22054 (2009)

    CrossRef  CAS  Google Scholar 

  7. Liu, Y., Dobrinsky, A., Yakobson, B.I.: Graphene edge from armchair to zigzag: the origins of nanotube chirality? Phys. Rev. Lett. 105, 235502 (2010)

    CrossRef  Google Scholar 

  8. Lu, Q., Huang, R.: Nonlinear mechanics of single-atomic-layer graphene sheets. IJAM 1, 443–467 (2009)

    Google Scholar 

  9. Marder, M., Deegan, R.D., Sharon, E.: Crumpling, buckling, and cracking: elasticity of thin sheets. Phys. Today 60, 33–38 (2007)

    CrossRef  Google Scholar 

  10. Plimton, S.J.: Fast parallel algorithms for short-range molecular dynamics. J. Chem. Phys. 117, 1–19 (1995). http://lammps.sandia.gov, Cited 2012

    Google Scholar 

  11. Qiang, L., Rui, H.: Excess energy and deformation along free edges of graphene nanoribbons. Phys. Rev. B. 81, 155410 (2010)

    CrossRef  Google Scholar 

  12. Rammerstorfer, F.G., Fischer, F.D., Friedl, N.: Buckling of free infinite strips under residual stresses and global tension. J. Appl. Mech. 68, 399–404 (2001)

    CrossRef  CAS  Google Scholar 

  13. Seung, H.S., Nelson, D.R.: Defects in flexible membranes with crystalline order. Phys. Rev. A 38, 1005–1018 (1988)

    CrossRef  Google Scholar 

  14. Sharon, E., Efrati, E.: The mechanics of non-Euclidean plates. Soft Matter 6, 5693–5704 (2010)

    CrossRef  CAS  Google Scholar 

  15. Stuart, S.J., Tutein, A.B., Harrison, J.A.: A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 112, 6472–6486 (2000)

    CrossRef  CAS  Google Scholar 

  16. Wang, C.Y.: On the buckling of a circular plate on an elastic foundation. J. Appl. Mech. 72, 795–795 (2005)

    CrossRef  Google Scholar 

  17. Yakobson, B.I., Brabec, C.J., Bernholc, J.: Nanomechanics of carbon tubes: instabilities beyond linear response. Phys. Rev. Lett. 76, 2511–2514 (1996)

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Schwarzbart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schwarzbart, M., Steindl, A. (2013). Buckling of a Supported Annular Plate with a Non-Euclidean Metric. In: Altenbach, H., Morozov, N. (eds) Surface Effects in Solid Mechanics. Advanced Structured Materials, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35783-1_12

Download citation