Surface Effects in Solid Mechanics pp 1-19

Part of the Advanced Structured Materials book series (STRUCTMAT, volume 30) | Cite as

Mathematical Study of Boundary-Value Problems of Linear Elasticity with Surface Stresses

  • Holm Altenbach
  • Victor A. Eremeyev
  • Leonid P. Lebedev
Chapter

Abstract

Following [1, 2] a mathematical investigation of initial-boundary and boundary-value problems of statics, dynamics and natural oscillations for elastic bodies including surface stresses is presented. The weak setup of the problems based on mechanical variational principles is given with introducing of corresponding energy spaces. Theorems of uniqueness and existence of the weak solution in energy spaces of static and dynamic problems are formulated and proved. The studies are performed applying the functional analysis techniques. Solutions of the problems under consideration are more smooth on the boundary surface than solutions of corresponding problems of the classical linear elasticity. The weak setup of the eigen-value problems is based on the Rayleigh variational principle. Certain spectral properties are established for the problems under consideration. In particular, bounds for the eigenfrequencies of an elastic body with surface stresses are presented. These bounds demonstrate increases in both the rigidity of the body and of the eigenfrequencies over those of the body with surface stresses neglected. The considered weak statements of the initial and boundary problems constitute the mathematical foundation for some numerical methods, in particular, for the finite element method.

References

  1. 1.
    Altenbach, H., Eremeyev, V.A., Lebedev, L.P.: On the existence of solution in the linear elasticity with surface stresses. ZAMM 90(7), 535–536 (2010)CrossRefGoogle Scholar
  2. 2.
    Altenbach, H., Eremeyev, V.A., Lebedev, L.P.: On the spectrum and stiffness of an elastic body with surface stresses. ZAMM 91(9), 699–710 (2011)CrossRefGoogle Scholar
  3. 3.
    Ciarlet, P.G.: Mathematical Elasticity. Vol. I: Three-Dimensional Elasticity. North-Holland, Amsterdam (1988)Google Scholar
  4. 4.
    Ciarlet, P.G.: Mathematical Elasticity. Vol. III: Theory of Shells. North-Holland, Amsterdam (2000)Google Scholar
  5. 5.
    Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. SIAM, Philadelphia (2002)Google Scholar
  6. 6.
    Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. I. Wiley, Singapore (1989)Google Scholar
  7. 7.
    Duan, H.L., Wang, J., Karihaloo, B.L.: Theory of elasticity at the nanoscale. Adv. Appl. Mech. 42, 1–68 (2008)Google Scholar
  8. 8.
    Fichera, G.: Existence theorems in elasticity. In: S. Flügge (ed.) Handbuch der Physik, vol. VIa/2, pp. 347–389. Springer, Berlin (1972)Google Scholar
  9. 9.
    Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57(4), 291–323 (1975)Google Scholar
  10. 10.
    Javili, A., McBride, A., Steinmann, P.: Numerical modelling of thermomechanical solids with mechanically energetic (generalised) Kapitza interfaces. Comput. Mater. Sci. (2012). doi:10.1016/j.commatsci.2012.06.006
  11. 11.
    Javili, A., McBride, A., Steinmann, P., Reddy, B.D.: Relationships between the admissible range of surface material parameters and stability of linearly elastic bodies. Phil. Mag. (2012). doi:10.1080/14786435.2012.682175
  12. 12.
    Javili, A., Steinmann, P.: A finite element framework for continua with boundary energies. Part I: the two-dimensional case. Comput. Methods Appl. Mech. Eng. 198, 2198–2208 (2009)CrossRefGoogle Scholar
  13. 13.
    Javili, A., Steinmann, P.: A finite element framework for continua with boundary energies. Part II: the three-dimensional case. Comput. Methods Appl. Mech. Eng. 199, 755–765 (2010)CrossRefGoogle Scholar
  14. 14.
    Lebedev, L.P., Vorovich, I.I.: Functional Analysis in Mechanics. Springer, New York (2003)Google Scholar
  15. 15.
    Podstrigach, Y.S., Povstenko, Y.Z.: Introduction to Mechanics of Surface Phenomena in Deformable Solids (in Russian). Naukova Dumka, Kiev (1985)Google Scholar
  16. 16.
    Rubin, M., Benveniste, Y.: A Cosserat shell model for interphases in elastic media. J. Mech. Phys. Solids 52(5), 1023–1052 (2004)CrossRefGoogle Scholar
  17. 17.
    Schiavone, P., Ru, C.Q.: Solvability of boundary value problems in a theory of plane-strain elasticity with boundary reinforcement. Int. J. Eng. Sci. 47(11–12), 1331–1338 (2009)CrossRefGoogle Scholar
  18. 18.
    Steigmann, D.J., Ogden, R.W.: Elastic surface-substrate interactions. Proc. Royal Soc. Lond. A 455(1982), 437–474 (1999)CrossRefGoogle Scholar
  19. 19.
    Wang, J., Duan, H.L., Huang, Z.P., Karihaloo, B.L.: A scaling law for properties of nano-structured materials. Proc. Royal Soc. Lond. A 462(2069), 1355–1363 (2006)CrossRefGoogle Scholar
  20. 20.
    Wang, J., Huang, Z., Duan, H., Yu, S., Feng, X., Wang, G., Zhang, W., Wang, T.: Surface stress effect in mechanics of anostructured materials. Acta Mechanica Solida Sinica 24, 52–82 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Holm Altenbach
    • 1
  • Victor A. Eremeyev
    • 1
    • 2
  • Leonid P. Lebedev
    • 3
  1. 1.Institut für Mechanik, Fakultät für MaschinenbauOtto-von-Guericke-Universität Magdeburg MagdeburgGermany
  2. 2.South Scientific Center of RASci and South Federal UniversityRostov on DonRussia
  3. 3.Universidad Nacional de ColombiaBogotá D.C.Colombia

Personalised recommendations