Advertisement

Polyakov Action Minimization for Efficient Color Image Processing

  • Guy Rosman
  • Xue-Cheng Tai
  • Lorina Dascal
  • Ron Kimmel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6554)

Abstract

The Laplace-Beltrami operator is an extension of the Laplacian from flat domains to curved manifolds. It was proven to be useful for color image processing as it models a meaningful coupling between the color channels. This coupling is naturally expressed in the Beltrami framework in which a color image is regarded as a two dimensional manifold embedded in a hybrid, five-dimensional, spatial-chromatic (x,y,R,G,B) space.

The Beltrami filter defined by this framework minimizes the Polyakov action, adopted from high-energy physics, which measures the area of the image manifold. Minimization is usually obtained through a geometric heat equation defined by the Laplace-Beltrami operator. Though efficient simplifications such as the bilateral filter have been proposed for the single channel case, so far, the coupling between the color channel posed a non-trivial obstacle when designing fast Beltrami filters.

Here, we propose to use an augmented Lagrangian approach to design an efficient and accurate regularization framework for color image processing by minimizing the Polyakov action. We extend the augmented Lagrangian framework for total variation (TV) image denoising to the more general Polyakov action case for color images, and apply the proposed framework to denoise and deblur color images.

Keywords

Laplace-Beltrami diffusion optimization denoising PDEs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Antoni Buades, B.C., Morel, J.-M.: A review of image denoising algorithms, with a new one. SIAM Interdisciplinary Journal 4, 490–530 (2005)Google Scholar
  2. 2.
    Bar, L., Brook, A., Sochen, N., Kiryati, N.: Deblurring of color images corrupted by impulsive noise. IEEE Trans. Image Process. 16(4), 1101–1111 (2007)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Barash, D.: A fundamental relationship between bilateral filtering, adaptive smoothing and the nonlinear diffusion equation. IEEE Trans. Pattern Anal. Mach. Intell. 24(6), 844–847 (2002)CrossRefGoogle Scholar
  4. 4.
    Blomgren, P., Chan, T.F.: Color TV: Total variation methods for restoration of vector valued images. IEEE Trans. Image Processing 7, 304–309 (1996)CrossRefGoogle Scholar
  5. 5.
    Bresson, X., Chan, T.: Fast dual minimization of the vectorial total variation norm and applications to color image processing. CAM-Report 07-25, UCLA (2007)Google Scholar
  6. 6.
    Bresson, X., Vandergheynst, P., Thiran, J.-P.: Multiscale active contours. Int. J. of Comp. Vision 70(3), 197–211 (2006)CrossRefGoogle Scholar
  7. 7.
    Carter, J.L.: Dual methods for total variation-based image restoration. CAM-Report 02-13, UCLA (April 2002)Google Scholar
  8. 8.
    Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20(1-2), 89–97 (2004)MathSciNetGoogle Scholar
  9. 9.
    Chan, T.F., Golub, G.H., Mulet, P.: A nonlinear primal-dual method for total variation-based image restoration. SIAM J. Sci. Comput. 20, 1964–1977 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image restoration by sparse 3D transform-domain collaborative filtering. In: Astola, J.T., Egiazarian, K.O., Dougherty, E.R. (eds.) Proc. SPIE, vol. 6812 (2008)Google Scholar
  11. 11.
    Dascal, L., Rosman, G., Tai, X.-C., Kimmel, R.: On Semi-implicit Splitting Schemes for the Beltrami Color Flow. In: Tai, X.-C., Mørken, K., Lysaker, M., Lie, K.-A. (eds.) SSVM 2009. LNCS, vol. 5567, pp. 259–270. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    do Carmo, M.P.: Riemannian Geometry. Birkhäuser Verlag, Boston (1992)zbMATHGoogle Scholar
  13. 13.
    Elad, M.: On the bilateral filter and ways to improve it. IEEE Trans. Image Process. 11(10), 1141–1151 (2002)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Goldluecke, B., Cremers, D.: An approach to vectorial total variation based on geometric measure theory. In: Computer Vision and Pattern Recognition (2010)Google Scholar
  15. 15.
    Hesteness, M.R.: Multipliers and gradient methods. Journal of Optimization Theory and Applications 4, 303–320 (1969)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kaftory, R., Sochen, N., Zeevi, Y.Y.: Variational blind deconvolution of multi-channel images. IJIST 15(1), 56–63 (2005)Google Scholar
  17. 17.
    Kimmel, R.: Numerical Geometry of Images: Theory, Algorithms, and Applications. Springer (2003)Google Scholar
  18. 18.
    Kimmel, R., Malladi, R., Sochen, N.: Images as embedding maps and minimal surfaces: Movies, color, texture, and volumetric medical images. Int. J. of Comp. Vision 39(2), 111–129 (2000)CrossRefzbMATHGoogle Scholar
  19. 19.
    Lü, T., Neittaanmaäki, P., Tai, X.-C.: A parallel splitting up method and its application to Navier-Stokes equations. Applied Mathematics Letters 4(2), 25–29 (1991)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for total variation-based image restoration. Simul. 4, 460–489 (2005)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Paris, S., Durand, F.: A fast approximation of the bilateral filter using a signal processing approach. Int. J. of Comp. Vision 81(1), 24–52 (2009)CrossRefGoogle Scholar
  22. 22.
    Polyakov, A.M.: Quantum geometry of bosonic strings. Physics Letters 103B(3), 207–210 (1981)MathSciNetGoogle Scholar
  23. 23.
    Powell, M.J.: Optimization. chapter A method for nonlinear constraints in minimization problems, pp. 283–298. Academic Press (1969)Google Scholar
  24. 24.
    Rosman, G., Dascal, L., Kimmel, R., Sidi, A.: Efficient beltrami image filtering via vector extrapolation methods. SIAM J. Imag. Sci. (3), 858–878 (2008)Google Scholar
  25. 25.
    Rosman, G., Tai, X.-C., Kimmel, R., Dascal, L.: Polyakov action minimization for efficient color image processing. Technical Report CIS-2010-04, Technion (2010)Google Scholar
  26. 26.
    Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D Letters 60, 259–268 (1992)zbMATHGoogle Scholar
  27. 27.
    Sapiro, G., Ringach, D.L.: Anisotropic diffusion of multivalued images with applications to color filtering. IEEE Trans. Image Process. 5(11), 1582–1586 (1996)CrossRefGoogle Scholar
  28. 28.
    Smith, S.M., Brady, J.: SUSAN – A new approach to low level image processing. Int. J. of Comp. Vision 23, 45–78 (1997)CrossRefGoogle Scholar
  29. 29.
    Sochen, N., Kimmel, R., Bruckstein, A.M.: Diffusions and confusions in signal and image processing. J. of Math. in Imag. and Vis. 14(3), 195–209 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Sochen, N., Kimmel, R., Maladi, R.: A general framework for low level vision. IEEE Trans. Image Process. 7(3), 310–318 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Spira, A., Kimmel, R., Sochen, N.A.: A short-time Beltrami kernel for smoothing images and manifolds. IEEE Trans. Image Process. 16(6), 1628–1636 (2007)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Tai, X.-C., Wu, C.: Augmented Lagrangian method, dual methods and split Bregman iteration for ROF model. In: SSVM, pp. 502–513 (2009)Google Scholar
  33. 33.
    Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Int. Conf. on Comp. Vision, pp. 836–846 (1998)Google Scholar
  34. 34.
    Tschumperle, D., Deriche, R.: Vector-valued image regularization with pdes: A common framework for different applications. IEEE Transactions on Pattern Analysis and Machine Intelligence 27, 506–517 (2005)CrossRefGoogle Scholar
  35. 35.
    Wang, Y., Yang, J., Yin, W., Zhang, Y.: A new alternating minimization algorithm for total variation image reconstruction. SIAM J. Imag. Sci. 1(3), 248–272 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Wu, C., Zhang, J., Tai, X.-C.: Augmented Lagrangian method for total variation restoration with non-quadratic fidelity. CAM Report 09-82, UCLA (December 2009)Google Scholar
  37. 37.
    Yaroslavsky, L.P.: Digital Picture Processing. Springer-Verlag New York, Inc., Secaucus (1985)CrossRefzbMATHGoogle Scholar
  38. 38.
    Yezzi, A.J.: Modified curvature motion for image smoothing and enhancement. IEEE Trans. Image Process. 7(3), 345–352 (1998)CrossRefGoogle Scholar
  39. 39.
    Zenzo, S.D.: A note on the gradient of a multi-image. Computer Vision, Graphics, and Image Processing 33(1), 116–125 (1986)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Guy Rosman
    • 1
  • Xue-Cheng Tai
    • 2
    • 3
  • Lorina Dascal
    • 1
  • Ron Kimmel
    • 1
  1. 1.Dept. of Computer ScienceTechnionHaifaIsrael
  2. 2.Dept. of MathematicsBergen UniversityBergenNorway
  3. 3.Division of Mathematical Sciences, School of Physical and Mathematical SciencesNanyang Technological UniversitySingapore

Personalised recommendations