Removing the Example from Example-Based Photometric Stereo

  • Jens Ackermann
  • Martin Ritz
  • André Stork
  • Michael Goesele
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6554)


We introduce an example-based photometric stereo approach that does not require explicit reference objects. Instead, we use a robust multi-view stereo technique to create a partial reconstruction of the scene which serves as scene-intrinsic reference geometry. Similar to the standard approach, we then transfer normals from reconstructed to unreconstructed regions based on robust photometric matching. In contrast to traditional reference objects, the scene-intrinsic reference geometry is neither noise free nor does it necessarily contain all possible normal directions for given materials. We therefore propose several modifications that allow us to reconstruct high quality normal maps. During integration, we combine both normal and positional information yielding high quality reconstructions. We show results on several datasets including an example based on data solely collected from the Internet.


Reference Object Observation Vector Outdoor Scene Photometric Stereo Photo Collection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hertzmann, A., Seitz, S.M.: Example-based photometric stereo: Shape reconstruction with general, varying BRDFs. PAMI 27, 1254–1264 (2005)CrossRefGoogle Scholar
  2. 2.
    Woodham, R.J.: Photometric method for determining surface orientation from multiple images. Optical Engineering 19, 139–144 (1980)CrossRefGoogle Scholar
  3. 3.
    Horn, B.: Robot Vision. MIT Press (1986)Google Scholar
  4. 4.
    Basri, R., Jacobs, D.: Photometric stereo with general, unknown lighting. In: Proc. ICCV (2001)Google Scholar
  5. 5.
    Ramamoorthi, R., Hanrahan, P.: A signal-processing framework for inverse rendering. In: Proc. SIGGRAPH, pp. 117–128 (2001)Google Scholar
  6. 6.
    Shen, L., Tan, P.: Photometric stereo and weather estimation using internet images. In: Proc. CVPR (2009)Google Scholar
  7. 7.
    Joshi, N., Kriegman, D.: Shape from varying illumination and viewpoint. In: Proc. CVPR (2007)Google Scholar
  8. 8.
    Hernandez, C., Vogiatzis, G., Cipolla, R.: Multi-view photometric stereo. PAMI (2008)Google Scholar
  9. 9.
    Vlasic, D., Peers, P., Baran, I., Debevec, P., Popovic, J., Rusinkiewicz, S., Matusik, W.: Dynamic shape capture using multi-view photometric stereo. ACM Trans. Graph. 28 (2009)Google Scholar
  10. 10.
    Higo, T., Matsushita, Y., Joshi, N., Ikeuchi, K.: A hand-held photometric stereo camera for 3-d modeling. In: Proc. ICCV (2009)Google Scholar
  11. 11.
    Goldman, D.B., Curless, B., Hertzmann, A., Seitz, S.M.: Shape and spatially varying BRDFs from photometric stereo. In: Proc. ICCV, pp. 341–348 (2005)Google Scholar
  12. 12.
    Aldrin, N., Zickler, T., Kriegman, D.: Photometric stereo with non-parametric spatially-varying reflectance. In: Proc. CVPR (2008)Google Scholar
  13. 13.
    Silver, W.M.: Determining shape and reflectance using multiple images. Master’s thesis, Massachusetts Institute of Technology (1980)Google Scholar
  14. 14.
    Koppal, S.J., Narasimhan, S.G.: Clustering appearance for scene analysis. In: Proc. CVPR, pp. 1323–1330 (2006)Google Scholar
  15. 15.
    Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: exploring photo collections in 3D. ACM Trans. Graph. 25, 835–846 (2006)CrossRefGoogle Scholar
  16. 16.
    Seitz, S., Curless, B., Diebel, J., Scharstein, D., Szeliski, R.: A comparison and evaluation of multi-view stereo reconstruction algorithms. In: Proc. CVPR, pp. 519–526 (2006),
  17. 17.
    Goesele, M., Snavely, N., Curless, B., Hoppe, H., Seitz, S.M.: Multi-view stereo for community photo collections. In: Proc. ICCV (2007)Google Scholar
  18. 18.
    Curless, B., Levoy, M.: A volumetric method for building complex models from range images. In: Proc. SIGGRAPH, pp. 303–312 (1996)Google Scholar
  19. 19.
    Wu, Z., Li, L.: A line-integration based method for depth recovery from surface normals. Computer Vision, Graphics, and Image Processing 43, 53–66 (1988)CrossRefGoogle Scholar
  20. 20.
    Klette, R., Schluens, K.: Height data from gradient fields. In: Proc. Machine Vision Applications, Architectures, and Systems Integration V, pp. 204–215 (1996)Google Scholar
  21. 21.
    Smith, W.A.P., Hancock, E.R.: Statistical methods for surface integration. In: Proc. IMA Conference on the Mathematics of Surfaces, pp. 427–441 (2007)Google Scholar
  22. 22.
    Ho, J., Lim, J., Yang, M.-H., Kriegman, D.: Integrating Surface Normal Vectors Using Fast Marching Method. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 239–250. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    Durou, J.D., Aujol, J.F., Courteille, F.: Integrating the normal field of a surface in the presence of discontinuities. In: Proc. EMM-CVPR, pp. 261–273 (2009)Google Scholar
  24. 24.
    Horovitz, I., Kiryati, N.: Depth from gradient fields and control points: Bias correction in photometric stereo. Image and Vision Computing 22, 681–694 (2004)CrossRefGoogle Scholar
  25. 25.
    Nehab, D., Rusinkiewicz, S., Ramamoorthi, R.: Efficiently combining positions and normals for precise 3d geometry. ACM Trans. Graph. 24, 536–543 (2005)CrossRefGoogle Scholar
  26. 26.
    Furukawa, Y., Ponce, J.: Accurate, dense, and robust multi-view stereopsis. PAMI 32 (2010)Google Scholar
  27. 27.
    Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Proc. SGP, pp. 61–70 (2006)Google Scholar
  28. 28.
    Sato, I., Okabe, T., Yu, Q., Sato, Y.: Shape reconstruction based on similarity in radiance changes under varying illumination. In: Proc. ICCV, pp. 1–8 (2007)Google Scholar
  29. 29.
    Agrawal, A., Raskar, R., Chellappa, R.: What Is the Range of Surface Reconstructions from a Gradient Field? In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 578–591. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jens Ackermann
    • 1
  • Martin Ritz
    • 2
  • André Stork
    • 2
  • Michael Goesele
    • 1
  1. 1.TU DarmstadtGermany
  2. 2.Fraunhofer IGDGermany

Personalised recommendations