Saliency Maps of High Dynamic Range Images

  • Roland Brémond
  • Josselin Petit
  • Jean-Philippe Tarel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6554)

Abstract

A number of computational models of visual attention have been proposed based on the concept of saliency map. Some of them have been validated as predictors of the visual scan-path of observers looking at images and videos, using oculometric data. They are widely used for Computer Graphics applications, mainly for image rendering, in order to avoid spending too much computing time on non salient areas, and in video coding, in order to keep a better image quality in salient areas. However, these algorithms were not used so far with High Dynamic Range (HDR) inputs. In this paper, we show that in the case of HDR images, the predictions using algorithms based on Itti, Koch and Niebur [1] are less accurate than with 8-bit images. To improve the saliency computation for HDR inputs, we propose a new algorithm derived from Itti and Koch [3]. From an eye tracking experiment with a HDR scene, we show that this algorithm leads to good results for the saliency map computation, with a better fit between the saliency map and the ocular fixation map than Itti, Koch and Niebur’s algorithm. These results may impact image retargeting issues, for the display of HDR images on both LDR and HDR display devices.

Keywords

Saliency Map High Dynamic Range Eye Tracking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 20, 1254–1259 (1998)CrossRefGoogle Scholar
  2. 2.
    Reinhard, E., Ward, G., Pattanaik, S.N., Debevec, P.: High dynamic range imaging: acquisition, display, and image-based lighting. Morgan Kaufmann (2005)Google Scholar
  3. 3.
    Itti, L., Koch, C.: A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Research 40, 1489–1506 (2000)CrossRefGoogle Scholar
  4. 4.
    Treisman, A.M., Gelade, G.: A feature-integration theory of attention. Cognitive Psychology 12, 97–136 (1980)CrossRefGoogle Scholar
  5. 5.
    Itti, L., Rees, G., Tsotsos, J.K. (eds.): Neurobiology of attention. Elsevier (2005)Google Scholar
  6. 6.
    Koch, C., Ullman, S.: Shifts in selective visual attention: towards the underlying neural circuitry. Human Neurobiology 4, 219–227 (1985)Google Scholar
  7. 7.
    Choi, S.B., Jung, B.S., Ban, S.W., Niitsuma, H., Lee, M.: Biologically motivated vergence control system using human-like selective attention model. Neurocomputing 69, 537–558 (2006)CrossRefGoogle Scholar
  8. 8.
    Parkhurst, D., Law, K., Niebur, E.: Modeling the role of saliency in the allocation of overt visual attention. Vision Research 42, 107–123 (2007)CrossRefGoogle Scholar
  9. 9.
    Reddy, M.: Perceptually optimized 3D graphics. IEEE Computer Graphics and Applications 22, 68–75 (2001)CrossRefGoogle Scholar
  10. 10.
    Lee, C.H., Varshney, A., Jacobs, D.W.: Mesh saliency. ACM Transactions on Graphics 24, 659–666 (2005)CrossRefGoogle Scholar
  11. 11.
    LeMeur, O., LeCallet, P., Barba, D., Thoreau, D.: A coherent computational approach to model bottom-up visual attention. IEEE Transactions on Pattern Analysis and Machine Intelligence 28, 802–817 (2006)CrossRefGoogle Scholar
  12. 12.
    Walther, D., Koch, C.: Modeling attention to salient proto-objects. Neural Networks 19, 1395–1407 (2006)CrossRefMATHGoogle Scholar
  13. 13.
    Walther, D.: http://www.saliencytoolbox.net/ (2006)
  14. 14.
    Bruce, N., Tsotsos, J.K.: Saliency based on information maximization. Advances in Neural Information Processing Systems 18, 155–162 (2006)Google Scholar
  15. 15.
  16. 16.
    Reinhard, E., Stark, M., Shirley, P., Ferwerda, J.: Photographic tone reproduction for digital images. In: Proceedings of SIGGRAPH (2002)Google Scholar
  17. 17.
    Tumblin, J., Rushmeier, H.: Tone reproduction for realistic images. IEEE Computer Graphics and Applications 13, 42–48 (1993)CrossRefGoogle Scholar
  18. 18.
    Ward, G., Rushmeier, H., Piatko, C.: A visibility matching tone reproduction operator for high dynamic range scenes. IEEE Transactions on Visualization and Computer Graphics 3, 291–306 (1997)CrossRefGoogle Scholar
  19. 19.
    Pattanaik, S.N., Tumblin, J., Yee, H., Greenberg, D.P.: Time-dependent visual adaptation for fast realistic image display. In: Proceedings of SIGGRAPH, pp. 47–54. ACM Press (2000)Google Scholar
  20. 20.
    Reinhard, E., Devlin, K.: Dynamic range reduction inspired by photoreceptor physiology. IEEE Transactions on Visualization and Computer Graphics 11 (2005)Google Scholar
  21. 21.
    Mantiuk, R., Daly, S., Kerofsky, L.: Display adaptive tone mapping. ACM Transactions on Graphics 27, article no. 68 (2008)Google Scholar
  22. 22.
    Daly, S.: The visible differences predictor: an algorithm for the assessment of image fidelity. In: Watson, A.B. (ed.) Digital Images and Human Vision, pp. 179–206. MIT Press, Cambridge (1993)Google Scholar
  23. 23.
    Itti, L.: Automatic foveation for video compression using a neurobiological model of visual attention. IEEE Transactions on Image Processing 13, 1304–1318 (2004)CrossRefGoogle Scholar
  24. 24.
    Debevec, P., Malik, J.: Recovering high dynamic range radiance maps from photographs. In: Proceedings of ACM SIGGRAPH, pp. 369–378 (1997)Google Scholar
  25. 25.
    Knudsen, E.I.: Fundamental components of attention. Annual Review Neuroscience 30, 57–78 (2007)CrossRefGoogle Scholar
  26. 26.
    Navalpakkam, V., Itti, L.: Modeling the influence of task on attention. Vision Research 45, 205–231 (2005)CrossRefGoogle Scholar
  27. 27.
    Gao, D., Han, S., Vasconcelos, N.: Discriminant saliency, the detection of suspicious coincidences, and applications to visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 31, 989–1005 (2009)CrossRefGoogle Scholar
  28. 28.
    Simon, L., Tarel, J.P., Brémond, R.: Alerting the drivers about road signs with poor visual saliency. In: Proceedings of IEEE Intelligent Vehicle Symposium (IV 2009), Xian, China, pp. 48–53 (2009), http://perso.lcpc.fr/tarel.jean-philippe/publis/iv09b.html

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Roland Brémond
    • 1
  • Josselin Petit
    • 1
  • Jean-Philippe Tarel
    • 1
  1. 1.LEPSiS, INRETS-LCPCUniversité Paris EstParisFrance

Personalised recommendations