Advertisement

A Criterion for Existence of Global-in-Time Trajectories of Non-deterministic Markovian Systems

  • Ievgen Ivanov
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 347)

Abstract

We consider the following question: given a continuous-time non-deterministic (not necessarily time-invariant) dynamical system, is it true that for each initial condition there exists a global-in-time trajectory. We study this question for a large class of systems, namely the class of complete non-deterministic Markovian systems. We show that for this class our question can be answered using analysis of existence of locally defined trajectories in a neighborhood of each time moment.

Keywords

dynamical systems non-deterministic systems Markovian systems global-in-time trajectories 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Coddington, E., Levinson, N.: Theory of ordinary differential equations. McGraw-Hill, New York (1955)zbMATHGoogle Scholar
  2. 2.
    Fillipov, A.: Differential equations with discontinuous right-hand sides. AMS Trans. 42, 199–231 (1964)Google Scholar
  3. 3.
    Gliklikh, Y.: Necessary and sufficient conditions for global-in-time existence of solutions of ordinary, stochastic, and parabolic differential equations. Abstract and Applied Analysis 2006, 1–17 (2006)Google Scholar
  4. 4.
    Tangiguchi, T.: Global existence of solutions of differential inclusions. Journal of Mathematical Analysis and Applications 166, 41–51 (1992)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Aubin, A., Cellina, A.: Differential inclusions. Springer, Berlin (1984)zbMATHCrossRefGoogle Scholar
  6. 6.
    Seah, S.W.: Existence of solutions and asymptotic equilibrium of multivalued differential systems. J. Math. Anal. Appl. 89, 648–663 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Heemels, W., Camlibel, M., Van der Schaft, A.J., Schumacher, J.M.: On the existence and uniqueness of solution trajectories to hybrid dynamical systems. In: Johansson, R., Rantzer, A. (eds.) Nonlinear and Hybrid Control in Automotive Applications, pp. 391–422. Springer, Berlin (2003)Google Scholar
  8. 8.
    Goebel, R., Sanfelice, R., Teel, R.: Hybrid dynamical systems. IEEE Control Systems Magazine 29, 29–93 (2009)MathSciNetGoogle Scholar
  9. 9.
    Henzinger, T.: The theory of hybrid automata. In: IEEE Symposium on Logic in Computer Science, pp. 278–292 (1996)Google Scholar
  10. 10.
    Doob, J.B.: Stochastic processes. Wiley-Interscience (1990)Google Scholar
  11. 11.
    Willems, J.: Paradigms and Puzzles in the Theory of Dynamical Systems. IEEE Transactions on Automatic Control 36, 259–294 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Kuczma, M., Choczewski, B., Ger, R.: Iterative Functional Equations. Cambridge University Press, Cambridge (1990)zbMATHCrossRefGoogle Scholar
  13. 13.
    Constantin, A.: Global existence of solutions for perturbed differential equations. Annali di Matematica Pura ed Applicata 168, 237–299 (1995)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ievgen Ivanov
    • 1
    • 2
  1. 1.Taras Shevchenko National University of KyivUkraine
  2. 2.Paul Sabatier UniversityToulouseFrance

Personalised recommendations