Advertisement

Semantic Annotation of Legal Texts through a FrameNet-Based Approach

  • Marcello Ceci
  • Leonardo Lesmo
  • Alessandro Mazzei
  • Monica Palmirani
  • Daniele P. Radicioni
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7639)

Abstract

In this work we illustrate a novel approach for solving an information extraction problem on legal texts. It is based on Natural Language Processing techniques and on the adoption of a formalization that allows coupling domain knowledge and syntactic information. The proposed approach is applied to extend an existing system to assist human annotators in handling normative modificatory provisions –that are the changes to other normative texts–. Such laws ‘versioning’ problem is a hard and relevant one. We provide a linguistic and legal analysis of a particular case of modificatory provision (the efficacy suspension), show how such knowledge can be formalized in a linguistic resource such as FrameNet, and used by the semantic interpreter.

Keywords

Knowledge modelling semantic interpretation NLP 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baker, C.F., Fillmore, C.J., Lowe, J.B.: The Berkeley FrameNet Project. In: Proceedings of the 17th International Conference on Computational Linguistics, vol. 1, pp. 86–90. Association for Computational Linguistics, Montreal (1998), http://portal.acm.org/citation.cfm?id=980860 CrossRefGoogle Scholar
  2. 2.
    Biagioli, C., Francesconi, E., Spinosa, P., Taddei, M.: The NIR project: Standards and tools for legislative drafting and legal document web publication. In: Proceedings of ICAIL Workshop on e-Government:Modelling Norms and Concepts as Key Issues, pp. 69–78 (2003)Google Scholar
  3. 3.
    Brighi, R., Lesmo, L., Mazzei, A., Palmirani, M., Radicioni, D.P.: Towards Semantic Interpretation of Legal Modifications through Deep Syntactic Analysis. In: Jurix 2008: The 21st Annual Conference. Frontiers in Artificial Intelligence and Applications, vol. 189, pp. 202–206. IOS Press (2008), http://www.di.unito.it/~radicion/papers/brighi08towards.pdf
  4. 4.
    Cherubini, M., Giardiello, G., Marchi, S., Montemagni, S., Spinosa, P., Venturi, G.: NLP-based metadata annotation of textual amendments. In: Proc. of Workshop On Legislative Xml, JURIX 2008 (2008)Google Scholar
  5. 5.
    Fillmore, C.J.: Scenes-and-frames semantics. In: Zampolli, A. (ed.) Linguistic Structures Processing, pp. 55–79. North-Holland, Amsterdam (1977)Google Scholar
  6. 6.
    Lesmo, L.: The Rule-Based Parser of the NLP Group of the University of Torino. Intelligenza Artificiale 2(4), 46–47 (2007)Google Scholar
  7. 7.
    Lesmo, L., Mazzei, A., Radicioni, D.P.: Semantic Annotation of Legal Modificatory Provisions. In: Serra, R., Cucchiara, R. (eds.) AI*IA 2009. LNCS, vol. 5883, pp. 304–313. Springer, Heidelberg (2009), http://dblp.uni-trier.de/db/conf/aiia/aiia2009.html#LesmoMR09 CrossRefGoogle Scholar
  8. 8.
    Lupo, C., Vitali, F., Francesconi, E., Palmirani, M., Winkels, R., de Maat, E., Boer, A., Mascellani, P.: General XML format(s) for legal Sources - ESTRELLA European Project. Deliverable 3.1, Faculty of Law, University of Amsterdam, Amsterdam, The Netherlands (2007), http://www.estrellaproject.org
  9. 9.
    de Maat, E., Winkels, R.: Automatic Classification of Sentences in Dutch Laws. In: Legal Knowledge and Information Systems, Jurix 2008: The 21st Annual Conference. Frontiers in Artificial Intelligence and Applications, pp. 207–216. IOS Press (December 2008)Google Scholar
  10. 10.
    Mazzei, A., Radicioni, D., Brighi, R.: NLP-based Extraction of Modificatory Provisions Semantics. In: Proceedings of the International Conference on Artificial Intelligence and Law, ICAIL 2009, pp. 50–57. ACM, Barcelona (2009)CrossRefGoogle Scholar
  11. 11.
    McCarty, L.T.: Deep semantic interpretations of legal texts. In: ICAIL 2007: Proceedings of the 11th International Conference on Artificial Intelligence and Law, pp. 217–224. ACM, New York (2007)Google Scholar
  12. 12.
    Palmirani, M., Brighi, R.: An XML Editor for Legal Information Management. In: Traunmüller, R. (ed.) EGOV 2003. LNCS, vol. 2739, pp. 421–429. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Palmirani, M., Brighi, R.: Model Regularity of Legal Language in Active Modifications. In: Casanovas, P., Pagallo, U., Sartor, G., Ajani, G. (eds.) AICOL-II/JURIX 2009. LNCS, vol. 6237, pp. 54–73. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Palmirani, M., Brighi, R., Massini, M.: Automated Extraction of Normative References in Legal Texts. In: ICAIL 2003, pp. 105–106 (2003), http://dblp.uni-trier.de/db/conf/icail/icail2003.html#PalmiraniBM03
  15. 15.
    Soria, C., Bartolini, R., Lenci, A., Montemagni, S., Pirrelli, V.: Automatic Extraction of Semantics in Law Documents. In: Biagioli, C., Francesconi, E., Sartor, G. (eds.) Proceedings of the V Legislative XML Workshop, pp. 253–266. European Press Academic Publishing (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Marcello Ceci
    • 1
  • Leonardo Lesmo
    • 2
  • Alessandro Mazzei
    • 2
  • Monica Palmirani
    • 1
  • Daniele P. Radicioni
    • 2
  1. 1.CIRSFIDUniversity of BolognaItaly
  2. 2.Computer Science DepartmentUniversity of TurinItaly

Personalised recommendations