Skip to main content

Interactive Video Retrieval Using Combination of Semantic Index and Instance Search

  • Conference paper
Advances in Multimedia Modeling

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7733))

Abstract

We present our efficient implementation of interactive video search tool for Known Item Search(KIS) using the combination of Semantic Indexing(SIN) and Instance Search(INS). The interaction way allows users to index a video clip via their knowledge of visual content. Our system offers users a set of concepts and SIN module returns candidate keyframes based on users selection of concepts. Users choose keyframes which contains the interest items, and the INS module recommends frames with similar content to the target clip. Finally, the precise time stamps of the clip are given by the Temporal Refinement(TR).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tao, K., et al.: The France Telecom Orange Labs (Beijing) Video Semantic Indexing Systems TRECVID 2011 (2011), http://www-nlpir.nist.gov/projects/tvpubs/tv.pubs.org.html

  2. Nistér, D., Stewénius, H.: Scalable Recognition with a Vocabulary Tree. In: CVPR (2006)

    Google Scholar 

  3. Rota Bulò, S., Rabbi, M., Pelillo, M.: Content-based image retrieval with relevance feedback using random walks. Pattern Recogn. 44 (September 2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bai, H., Wang, L., Dong, Y., Tao, K. (2013). Interactive Video Retrieval Using Combination of Semantic Index and Instance Search. In: Li, S., et al. Advances in Multimedia Modeling. Lecture Notes in Computer Science, vol 7733. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35728-2_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35728-2_67

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35727-5

  • Online ISBN: 978-3-642-35728-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics