Automated Support for the Investigation of Paraconsistent and Other Logics

  • Agata Ciabattoni
  • Ori Lahav
  • Lara Spendier
  • Anna Zamansky
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7734)

Abstract

We automate the construction of analytic sequent calculi and effective semantics for a large class of logics formulated as Hilbert calculi. Our method applies to infinitely many logics, which include the family of paraconsistent C-systems, as well as to other logics for which neither analytic calculi nor suitable semantics have so far been available.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Avron, A.: Logical non-determinism as a tool for logical modularity: An introduction. In: We Will Show Them: Essays in Honor of Dov Gabbay, pp. 105–124. College Publications (2005)Google Scholar
  2. 2.
    Avron, A.: Non-deterministic Semantics for Families of Paraconsistent Logics. In: Handbook of Paraconsistency. Studies in Logic, vol. 9, pp. 285–320. College Publications (2007)Google Scholar
  3. 3.
    Avron, A., Ben-Naim, J., Konikowska, B.: Cut-free ordinary sequent calculi for logics having generalized finite-valued semantics. Logica Universalis 1, 41–69 (2006)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Avron, A., Konikowska, B., Zamansky, A.: Modular construction of cut-free sequent calculi for paraconsistent logics. In: Proceedings of LICS 2012, pp. 85–94. IEEE (2012)Google Scholar
  5. 5.
    Avron, A., Zamansky, A.: Non-deterministic semantics for logical systems - A survey. In: Gabbay, D., Guenther, F. (eds.) Handbook of Philosophical Logic, vol. 16, pp. 227–304. Springer (2011)Google Scholar
  6. 6.
    Baaz, M., Lahav, O., Zamansky, A.: Effective finite-valued semantics for labelled calculi. In: Proceedings of IJCAR 2012, pp. 52–66 (2012)Google Scholar
  7. 7.
    Carnielli, W.A., Coniglio, M.E., Marcos, J.: Logics of formal inconsistency. In: Gabbay, D.M., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. 14, 2nd edn., pp. 15–107. Springer (2007)Google Scholar
  8. 8.
    Carnielli, W.A., Marcos, J.: A taxonomy of C-systems. In: Carnielli, W.A., Coniglio, M.E., D’Ottaviano, I. (eds.) Paraconsistency: The Logical Way to the Inconsistent. Lecture Notes in Pure and Applied Mathematics, vol. 228, pp. 1–94. Marcel Dekker (2002)Google Scholar
  9. 9.
    Ciabattoni, A., Galatos, N., Terui, K.: From axioms to analytic rules in nonclassical logics. In: Proceedings of LICS 2008, pp. 229–240. IEEE (2008)Google Scholar
  10. 10.
    da Costa, N.C.A.: On the theory of inconsistent formal systems. Notre Dame Journal of Formal Logic 15, 497–510 (1974)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Ohlbach, J.: Computer support for the development and investigation of logics. Journal of the IGPL 4, 109–127 (1994)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Agata Ciabattoni
    • 1
  • Ori Lahav
    • 2
  • Lara Spendier
    • 1
  • Anna Zamansky
    • 1
  1. 1.Vienna University of TechnologyAustria
  2. 2.Tel Aviv UniversityIsrael

Personalised recommendations