Advertisement

Paul Revere Protocols

  • Paul Syverson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7622)

Abstract

At the start of the American Revolution, Paul Revere designed one of the most famous covert signaling protocols in history. Though incredibly simple, it has interesting features that we explore in this paper. We also consider the use of Paul Revere protocols in covert computer communication. The Sleeping Beauty problem is a heavily researched puzzle in the theory of probability that previously only had counterintuitive descriptions and complex analyses. Representing it using Paul Revere protocols in covert computer communication provides a clear, natural explanation and simple resolution of this problem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arntzenius, F.: Reflections on Sleeping Beauty. Analysis 62(1), 53–62 (2002)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Elga, A.: Self-locating belief and the Sleeping Beauty problem. Analysis 60(2), 143–147 (2000)CrossRefGoogle Scholar
  3. 3.
    Fischer, D.H.: Paul Revere’s Ride. Oxford University Press (1994)Google Scholar
  4. 4.
    Groisman, B.: The end of sleeping beauty’s nightmare. British Journal for the Philosophy of Science 59(3), 409–416 (2008)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Halpern, J.Y.: Sleeping Beauty reconsidered: Conditioning and reflection in asynchronous systems. In: Gendler, T.S., Hawthorne, J. (eds.) Oxford Studies in Epistemology, vol. 1, ch. 5, pp. 111–142. Oxford University Press (2005)Google Scholar
  6. 6.
    Moskowitz, I.S., Greenwald, S.J., Kang, M.H.: An analysis of the timed z-channel. IEEE Transactions on Information Theory 44(7), 3162–3168 (1998)zbMATHCrossRefGoogle Scholar
  7. 7.
    Neal, R.M.: Puzzles of anthropic reasoning resolved using full non-indexical conditioning. Technical Report 0607, Dept. of Statistics, University of Toronto (August 2006), retrieved from http://arxiv.org/abs/math/0608592v1
  8. 8.
    Ross, J.: Sleeping Beauty, countable additivity, and rational dilemmas. Philosophical Review 119(4), 411–447 (2010)CrossRefGoogle Scholar
  9. 9.
    White, R.: The generalized Sleeping Beauty problem: a challenge for thirders. Analysis 66(2), 114–119 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Paul Syverson
    • 1
  1. 1.Naval Research LaboratoryUSA

Personalised recommendations