Skip to main content

Abstract

In this paper, we present a discrete adjoint method for optimal flow control of unsteady incompressible viscous flows. The discrete adjoint solver is developed in an automatic fashion from the flow solver by applying the Automatic Differentiation technique in reverse mode. The unsteady adjoint method requires the storage of the entire flow solution during the forward-in-time integration, which is then used in solving the adjoint equations in reverse time. For large-scale practical applications, the memory requirements can become prohibitively expensive. To reduce the memory requirements, the binomial checkpointing algorithm is combined with the adjoint solver. Numerical results are presented for laminar and turbulent cases to validate the discrete adjoint solver.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gunzburger, M.: Adjoint equation-based methods for control problems in incompressible, viscous flows. Flow, Turbulence and Combustion 65, 249–272 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Griewank, A., Walther, A.: Revolve: An implementation of checkpointing for the reverse or adjoint mode of computational differentiation. ACM Trans. Math. Software 26, 19–45 (2000)

    Article  MATH  Google Scholar 

  3. Stumm, P., Walther, A.: Multistage approaches for optimal offline checkpointing. SIAM J. Sci. Comput. 31(3), 1946–1967 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ravindran, S.S.: A Reduced order approach to optimal control of fluids using proper orthogonal decomposition. IJNMF 34(5), 425–448 (2000)

    MathSciNet  MATH  Google Scholar 

  5. Burkardt, J., Gunzburger, M., Lee, H.C.: POD and CVT-based reduced-order modeling of Navier-Stokes flows. Comput. Methods Appl. Mech. Engrg. 196, 337–355 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Nadarajah, S.K., McMullen, M.S., Jameson, A.: Non-linear frequency domain based optimum shape design for unsteady three-dimensional flows. AIAA paper 2006-1052 (2006)

    Google Scholar 

  7. Yamaleev, N.K., Diskin, B., Nielsen, E.J.: Local-in-time adjoint based method for design optimisation of unsteady flows. Journal of Computational Physics 229, 5394–5407 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Griewank, A.: Evaluating derivatives: principles and techniques of algorithmic differentiation. SIAM (2000)

    Google Scholar 

  9. Elliott, J., Peraire, J.: Practical three-dimensional aerodynamic design and optimization using unstructured meshes. AIAA Journal 35(9), 1479–1485 (1997)

    Article  MATH  Google Scholar 

  10. Giles, M.B., Ghate, D., Duta, M.C.: Using automatic differentiation for adjoint CFD code development. Computational Fluid Dynamics Journal 16(4), 434–443 (2008)

    Google Scholar 

  11. Carnarius, A., Thiele, F., Özkaya, E., Gauger, N.R.: Adjoint approaches for optimal flow control. AIAA paper 2010-5088 (2010)

    Google Scholar 

  12. Hascoet, L., Pascual, V.: Tapenade 2.1 user’s guide. Technical Report 0300, INRIA (2004), http://www-sop.inria.fr/tropics/

  13. Squire, W., Trapp, G.: Using complex variables to estimate derivatives of real functions. SIAM Rev. 10(1), 110–112 (1998)

    Article  MathSciNet  Google Scholar 

  14. Christianson, B.: Reverse accumulation of attractive fixed points. Opt. Meth. and Soft. 3, 311–326 (1994)

    Article  Google Scholar 

  15. Gauger, N.R., Walther, A., Moldenhauer, C., Widhalm, M.: Automatic Differentiation of an Entire Design Chain for Aerodynamic Shape Optimization. In: Tropea, C., Jakirlic, S., Heinemann, H.-J., Henke, R., Hönlinger, H. (eds.) New Res. in Num. and Exp. Fluid Mech. VI. NNFM, vol. 96, pp. 454–461. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  16. Xue, L.: Entwicklung eines effizienten parallelen Loesungsalgorithms zur dreidimensionalen Simulation komplexer turbulenter Stroemungen, Ph.D. thesis, Institute of Fluid Mechanics and Engineering Acoustics, Technical University of Berlin (1998)

    Google Scholar 

  17. Menter, F.R.: Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA Journal 32, 269–289 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Nemili .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nemili, A., Özkaya, E., Gauger, N.R., Carnarius, A., Thiele, F. (2013). A Discrete Adjoint Approach for Unsteady Optimal Flow Control. In: Dillmann, A., Heller, G., Kreplin, HP., Nitsche, W., Peltzer, I. (eds) New Results in Numerical and Experimental Fluid Mechanics VIII. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 121. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35680-3_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35680-3_53

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35679-7

  • Online ISBN: 978-3-642-35680-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics