Skip to main content

Surface Integrity of LY2 Al Alloy Subjected to Laser Shock Processing

  • Chapter
  • First Online:

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 179))

Abstract

This chapter presents a comprehensive literature review of the physical and mechanical mechanisms of LSP on metallic materials, which have been investigated in the past 30 years. In particular, more attentions have been focused on the effects of LSP on mechanical properties of LY2 Al alloys are also highlighted.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Fairand, B. P., Wilcox, B. A., Gallagher, W. J., & Williams, D. N. (1972). Laser shock induced microstructural and mechanical property changes in 7075 Al. Journal of Applied Physics, 43, 3893–3895.

    Article  CAS  Google Scholar 

  2. Peyre, P., Fabbro, R., Merrien, P., & Lieurade, H. P. (1996). Laser shock processing of Al alloys. Application to high cycle fatigue behaviour. Materials Science and Engineering A, 210, 102–113.

    Article  Google Scholar 

  3. Ballard, P., Fournier, J., Fabbro, R., & Frelat, J. (1991). Residual stresses induced by laser-shocks. Journal de Physique IV, C3, 487–494.

    Google Scholar 

  4. Devaux, D., Fabbro, R., & Virmont, J. (1991). Generation of shock waves by laser–matter interaction in confined geometries. Journal De Physique IV, 1(C7), 179–182.

    Article  Google Scholar 

  5. Peyre, P., & Fabbro, R. (1995). Electromagnetic gauge study of laser-induced shock waves in aluminium alloys. Journal De Physique III France, 5, 1953–1964.

    Article  CAS  Google Scholar 

  6. Peyre, P., & Fabbro, R. (1995). Laser shock processing: a review of the physics and applications. Optical and Quantum Electronics, 27, 1213–1219.

    CAS  Google Scholar 

  7. Peyre, P., Merrien, P., Lieurade, H. P., & Fabbro, R. (1995). Laser induced shock waves as surface treatment for 7075–T7351 aluminium alloy. Surface Engineering, 11, 47–52.

    CAS  Google Scholar 

  8. Berthe, L., Fabbro, R., Peyre, P., Tollier, L., & Bartnicki, E. (1997). Shock waves from a water-confined laser-generated plasma. Journal of Applied Physics, 82, 2826–2832.

    Article  CAS  Google Scholar 

  9. Vaccari, J. A. (1992). Laser shocking extends fatigue life. In J. A. Vaccari (Ed.), Laser Technology (pp. 62–64) American Machinist.

    Google Scholar 

  10. Dane, C. B., Hackel. L. A., Daly. J., & Harrison, J. (1997). High laser power for peening of metals enabling production technology. Advanced aerospace materials and processes Conference’ 98. Tysons Corner,Virginia, June 15–18: 1998.

    Google Scholar 

  11. Tenaglia, R. D., & Lahrman, D. F. (2009). Shock tactics. Nature Photonics, 3, 267–269.

    Article  CAS  Google Scholar 

  12. Fairand, B. P., Clauer, A. H., Jung, R. G., & Wilcox, B. A. (1974). Quantitative assessment of laser-induced stress waves generated at confined surfaces. Applied Physics Letters, 25, 431–433.

    Article  CAS  Google Scholar 

  13. O’Keefe, J. D., & Skeen, C. H. (1972). Laser-induced stress-wave and impulse augmentation. Applied Physics Letters, 21, 464–466.

    Article  Google Scholar 

  14. Hoffman, C. G. (1974). Laser–target interactions. Journal of Applied Physics, 45, 2125–2128.

    Article  CAS  Google Scholar 

  15. Yang, L. C. (1974). Stress waves generated in thin metallic films by a Q-switched ruby laser. Journal of Applied Physics, 45, 2601–2607.

    Article  CAS  Google Scholar 

  16. Ling, P., & Wight, C. A. (1995). Laser-generated shock waves in thin films of energetic materials. Journal of Applied Physics, 78, 7022–7025.

    Article  CAS  Google Scholar 

  17. Couturier, S., Resseduier, M., Hallouin, M., Romain, J. P., & Bauer, F. (1996). Shock profile induced by short laser pulses. Journal of Applied Physics, 79, 9338–9342.

    Article  CAS  Google Scholar 

  18. White, R. M. (1963). Elastic wave generation by electron bombardment or electromagnetic wave absorption. Journal of Applied Physics, 34, 2123–2124.

    Article  Google Scholar 

  19. Skeen, C. H., & York, C. M. (1968). Laser-Induced blow-off phenomenon. Applied Physics Letters, 12, 369–371.

    Article  Google Scholar 

  20. Clauer, A. H., Holbrook, J. H., & Fairand, B. P. (1981). Effects of laser induced shock waves on metals. In M. A. Meyers & L. E. Murr (Eds.), Shock waves and high-strain-rate phenomena in metals (pp. 675–702). New York: Plenum Publishing Corporation.

    Chapter  Google Scholar 

  21. Fabbro, R., Fournier, J., Ballard, P., Devaux, D., & Virmont, J. (1990). Physical study of laser-produced plasma in confined geometry. Journal of Applied Physics, 68, 775–784.

    Article  CAS  Google Scholar 

  22. Fairand, B. P., Wilcox, B. A., Gallagher, W. J., & Williams, D. N. (1972). Laser shock-induced microstructural and mechanical property changes in 7075 Al. Journal of Applied Physics, 43, 3893–3896.

    Article  CAS  Google Scholar 

  23. Montross, C. S., Florea, V., & Bolger, J. A. (1999). Laser-induced shock wave generation and shock wave enhancement in basalt. International Journal of Rock Mechanics and Mining Sciences, 36, 849–855.

    Article  Google Scholar 

  24. Fairand, B. P., Clauer, A. H., & Wilcox, B. A. (1977). Pulsed laser induced deformation in an Fe-3 Wt Pct Si alloy. Metallurgical Transactions A, 8, 119–125.

    Article  Google Scholar 

  25. Clauer, A. H. (1996). Laser shock peening for fatigue resistance. In J. K. Gregory, H. J. Rack & D. Eylon (Eds.) Surface performance of titanium (pp. 217–230) Warrendale (PA): TMS.

    Google Scholar 

  26. Luong, H., & Hill, M. R. (2008). The effects of laser peening on high-cycle fatigue in 7085–T7651 Al alloy. Materials Science and Engineering A, 477, 208–216.

    Article  Google Scholar 

  27. Zhang, Y. K., Zhang, X. R., Wang, X. D., Zhang, S. Y., Gao, C. Y., Zhou, J. Z., et al. (2001). Elastic properties modification in Al alloy induced by laser-shock processing. Materials Science and Engineering A, 297, 138–143.

    Article  Google Scholar 

  28. Rubio-González, C., Ocańa, J. L., Gomez-Rosas, G., Molpeceres, C., Paredes, M., Banderas, A., et al. (2004). Effect of laser shock processing on fatigue crack growth and fracture toughness of 6061–T6 Al alloy. Materials Science and Engineering A, 386, 291–295.

    Article  Google Scholar 

  29. Yang, J. M., Her, Y. C., Han, N., & Clauer, A. (2001). Laser shock peening on fatigue behavior of 2024–T3 Al alloy with fastener holes and stop holes. Materials Science and Engineering A, 298, 296–299.

    Article  Google Scholar 

  30. Zhang, H., Zhang, Y. K., & Yu, C. Y. (1999). Surface treatment of Al alloy by laser shock processing. Surface Engineering, 15, 454–456.

    Article  CAS  Google Scholar 

  31. Fourier, J. (1990). Mechanical effects induced by shock waves generated by high-energy laser pulses. Materials Manufacturing Processes, 5, 144–147.

    Google Scholar 

  32. Sánchez-Santana, U., Rubio-González, C., Gomez-Rosas, G., Ocana, J. L., Porro, J., & Morales, M. (2006). Wear and friction of 6061–T6 Al alloy treated by laser shock processing. Wear, 260, 847–854.

    Article  Google Scholar 

  33. Zhang, Y. K., Lu, J. Z., Ren, X. D., Yao, H. B., & Yao, H. X. (2009). Effect of laser shock processing on the mechanical properties and fatigue lives of the turbojet engine blades manufactured by LY2 Al alloy. Materials and Design, 30(5), 1697–1703.

    Article  CAS  Google Scholar 

  34. Clauer, A. H., Fairand, B. P., & Wilcox, B. A. (1977). Laser shock hardening of weld zones in Al alloys. Metallurgical and Materials Transactions A: Physical, 8, 1871–1876.

    Article  Google Scholar 

  35. Lu, J. Z., Zhang, L., Feng, A. X., Jiang, Y. F., & Cheng, G. G. (2009). Effects of laser shock processing on mechanical properties of Fe–Ni alloy. Materials and Design, 30(9), 3673–3678.

    Article  CAS  Google Scholar 

  36. Read, D. T., & Dally, J. W. (1993). A new method for measuring the strength and ductility of thin films. Journal of Materials Research, 8(7), 1542–1549.

    Article  CAS  Google Scholar 

  37. Weihs, T. P., Hong, S., Bravman, J. C., & Nix, W. D. (1998). Mechanical deflection of cantilever micro beams: A new technique for testing the mechanical properties of thin films. Journal of Materials Research, 3(5), 931–942.

    Article  Google Scholar 

  38. Doerner, M. F., Gardner, D. S., & Nix, W. D. (1986). A method for interpreting the data from depth-sensing indentation instruments. Journal of Materials Research, 1(4), 601–609.

    Article  Google Scholar 

  39. Wang, X. W., Wang, J. Y., Wu, P., & Zhang, H. W. (2004). The investigation of internal friction and elastic modulus in surface nanostructured materials. Materials Science and Engineering A, 370, 158–162.

    Article  Google Scholar 

  40. San, J. F., Wang, Z. C., Li, S. H., & Liu, J. J. (2006). Nano-hardness and wear properties of C-implanted Nylon 6. Surface and Coatings Technology, 200(18–19), 5245–5252.

    Article  CAS  Google Scholar 

  41. Bhatt, R. T., Choi, S. R., Cosgriff, L. M., Fox, D. S., & Lee, K. N. (2008). Impact resistance of uncoated SiC/SiC composites. Materials Science and Engineering A, 476, 20–28.

    Article  Google Scholar 

  42. Chen, X., Wang, R., Yao, N., Evans, A. G., Hutchinson, J. W., & Bruce, R. W. (2003). Foreign object damage in a thermal barrier system: mechanisms and simulations. Materials Science and Engineering A, 352, 221–231.

    Article  Google Scholar 

  43. Montross, C. S., Ye, L., Wei, T., Clark, G., & Mai, Y. W. (2002). Laser shock processing and its effects on microstructure and properties of metal alloys: a review. International Journal of Fatigue, 24, 1021–1036.

    Article  CAS  Google Scholar 

  44. Montross, C. S., Brandt, M., & Swain, M. V. (2001). Self-limiting hardness changes in laser peened 6061–t6 aluminium. Surface Engineering, 17, 477–482.

    Article  CAS  Google Scholar 

  45. Montross, C. S., Florea, V., Brandt, M., & Swain, M. V. (2000). Subsurface properties of laser peened 6061–T6 Al weldments. Surface Engineering, 16, 116–121.

    Article  CAS  Google Scholar 

  46. Devaux, D., Fabbro, R., & Tollier, L. (1993). Generation of shock waves by laser-induced plasma in confined geometry. Journal of Applied Physics, 74, 2268–2273.

    Article  CAS  Google Scholar 

  47. Chu, J. P., Rigsbee, J. M., Banas′, G., & Elsayed-Ali, H. E. (1999). Laser-shock processing effects on surface microstructure and mechanical properties of low carbon steel. Materials Science and Engineering A, 260, 260–268.

    Article  Google Scholar 

  48. Ganin, E., Komem, Y., & Rosen, A. (1978). Shock induced hardness in α-Iron. Materials Science and Engineering A, 33, 1–4.

    Article  CAS  Google Scholar 

  49. Yilbas, B. S., & Arif, A. F. M. (2007). Laser shock processing of Al: model and experimental study. Journal of Physics. D. Applied Physics, 40, 6740–6747.

    Article  CAS  Google Scholar 

  50. McEvily, A. J., Renauld, M., & Bao, H. (1997). Fatigue fracture-surface roughness and the K-opening level. International Journal of Fatigue, 19, 629–633.

    Article  CAS  Google Scholar 

  51. Romeiro, F., Freitas, M., & Fonte, M. (2009). Fatigue crack growth with overloads/under loads: Interaction effects and surface roughness. International Journal of Fatigue, 31, 1889–1894.

    Article  CAS  Google Scholar 

  52. Zhang, Y. K., Zhang, S. Y., & Zhang, X. R. (1997). Laser ultrasound velocity of material with a surface coating layer. Surface and Coatings Technology, 92, 104–109.

    Article  CAS  Google Scholar 

  53. Rozmus-Górnikowska, M. (2010). Surface modifications of a Ti6Al4 V alloy by a laser shock processing. Acta Physica Polonica A, 117, 808–811.

    Google Scholar 

  54. Luong, H., & Hill, M. R. (2008). The effects of laser peening on high-cycle fatigue in 7085–T7651 Al alloy. Materials Science and Engineering A, 477, 208–216.

    Article  Google Scholar 

  55. WYKO Vision Software Help Document.

    Google Scholar 

  56. Rozmus-Górnikowska, M. (2010). Surface modifications of a Ti6Al4 V alloy by a laser shock processing. Acta Physica Polonica A, 5, 117–120.

    Google Scholar 

  57. Berthe, L., Fabbro, R., Peyre, P., Tollier, L., & Bartnicki, E. (1997). Shock waves from a water-confined laser-generated plasma. Journal of Applied Physics, 82, 2826–2832.

    Article  CAS  Google Scholar 

  58. Guo, Y. B., & Caslaru, R. (2011). Fabrication and characterization of micro dent arrays produced by laser shock peening on titanium Ti–6Al–4 V surfaces. Journal of Materials Processing Technology, 211, 729–736.

    Article  CAS  Google Scholar 

  59. Clauer, A. H., Holbrook J. H., Fairand. B. P. (1981). In M. A. Meyers & L. E. Murr (Eds.). Shock waves and high-strain-rate phenomena in metals (pp. 675–702). New York: Plenum Publishing Corporation.

    Google Scholar 

  60. Yilbas, B. S., & Arif, A. F. (2007). Laser shock processing of Al: model and experimental study. Journal of Physics D Applied Physics, 40, 6740–6747.

    Article  CAS  Google Scholar 

  61. Zhang, Y. K., Hu, C. L., Cai, L., Yang, J. C., & Zhang, X. R. (2001). Mechanism of improvement on fatigue life of metal by laser-excited shock waves. Applied Physics A, 72(2), 113–116.

    Article  CAS  Google Scholar 

  62. Yang, C. H., Hodgson, P. D., & Liu, Q. C. (2008). Geometrical effects on residual stresses in 7050–T7451 Al alloy rods subject to laser shock peening. Journal of Materials Processing Technology, 201, 303–309.

    Article  CAS  Google Scholar 

  63. Rubio-González, C., Ocaña, J. L., & Gomez-Rosas, G. (2004). Effect of laser shock processing on fatigue crack growth and fracture toughness of 6061–T6 Al alloy. Materials Science and Engineering A, 386, 291–295.

    Article  Google Scholar 

  64. Zhang, Y. K., Gu, Y. Y., Zhang, X. Q., & Zhou, J. (2006). Study of mechanism of overlay acting on laser shock waves. Journal of Applied Physics, 100, 103517-1.

    Google Scholar 

  65. Marchi, C. S., Zaleski, T., Lee, S., Yang, N. Y., & Stuart, B. (2008). Effect of laser peening on the hydrogen compatibility of corrosion-resistant nickel alloy. Scripta Materials, 58(9), 782–785.

    Article  Google Scholar 

  66. Zhang, Y. K., Zhang, S. Y., & Cai, L. (1997). Investigation of surface qualities of laser shock-processes zones and the effect on the fatigue life of Al alloy. Surface and Coatings Technology, 92, 104–107.

    Article  CAS  Google Scholar 

  67. Warren, A. W., Guo, Y. B., & Chen, S. C. (2008). Massive parallel laser shock peening: Simulation, analysis, and validation. International Journal of Fatigue, 30(1), 188–197.

    Article  CAS  Google Scholar 

  68. Dane, C. B., Hackel, L. A., Daly, J., & Harrisson, J. (1997). Laser peening of metals-enabling laser technology. Advanced Materials Processes, 5, 13–27.

    Google Scholar 

  69. Vaccari, J. A. (1992). Laser shocking extends fatigue life. American Machine, 6, 62–64.

    Google Scholar 

  70. Ding, K., & Ye, L. (2003). Three-dimensional dynamic finite element analysis of multiple laser shock peening processes. Surface Engineering, 19, 351–358.

    Article  CAS  Google Scholar 

  71. Hu, Y. X., Yao, Z. Q., & Hu, J. (2006). 3-D FEM simulation of laser shock processing. Surface and Coatings Technology, 201, 1426–1435.

    Article  CAS  Google Scholar 

  72. Nalla, R. K., Altenberger, I., Noster, U., Liu, G. Y., Scholtes, B., & Ritchie, R. O. (2003). On the influence of mechanical surface treatments-deep rolling and laser shock peening-on the fatigue behavior of Ti-6Al-4 V at ambient and elevated temperatures. Materials Science and Engineering A, 355, 216–230.

    Article  Google Scholar 

  73. Nikitin, I., Sholtes, B., Maier, H. J., & Altenberger, I. (2004). High temperature fatigue behavior and residual stress stability of laser-shock peened and deep rolled. Scripta Materials, 50(10), 1345–1350.

    Article  CAS  Google Scholar 

  74. Hu, Y. X., & Yao, Z. Q. (2008). FEM simulation of residual stresses induced by laser shock with overlapping laser spots. Acta Metallurgica Sinica (English Letters), 21(2), 125–132.

    Article  CAS  Google Scholar 

  75. Evans, A. D., Bruno, G., King, A., Withers, P. J. (2002). Laser shock peening for aerospace Ti-6Al-4 V alloy: a residual stress study. Annual report of the institut Laue-Langevin (ILL), pp. 42–43.

    Google Scholar 

  76. Clauer, H. A., Walters, C. T., & Ford, S. C. (1983). The effects of laser shock processing on the fatigue properties of -T3 Al. In Lasers in materials processing. Metals Park (OH), American Society for Metals, pp 7–22.

    Google Scholar 

  77. ABAQUS, Inc. (2012). ABAQUS User’s Manual, Ver. 6.12, Pawtucket, RI.

    Google Scholar 

  78. Ding, K., & Ye, L. (2003). FEM simulation of two sided laser shock peening of thin sections of Ti-6Al-4 V alloy. Surface Engineering, 19, 127–133.

    Article  CAS  Google Scholar 

  79. Yakimets, I., Richard, C., Beranger, G., & Peyre, P. (2004). Laser peening processing effect on mechanical and tribological properties of rolling steel 100Cr6. Wear, 256(3–4), 311–320.

    Article  CAS  Google Scholar 

  80. Evans A. D., Bruno G., King A., & Withers P. J. (2002) Laser shock peening for aerospace Ti–6Al–4 V alloy: a residual stress study. Annual Report of the Institut Laue-Langevin (ILL), Grenoble, France, pp. 42–43.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinzhong Lu .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhang, Y., Lu, J., Luo, K. (2013). Surface Integrity of LY2 Al Alloy Subjected to Laser Shock Processing. In: Laser Shock Processing of FCC Metals. Springer Series in Materials Science, vol 179. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35674-2_2

Download citation

Publish with us

Policies and ethics