Many Paths Lead to Discovery: Analogical Retrieval of Cancer Therapies

  • Trevor Cohen
  • Dominic Widdows
  • Lance De Vine
  • Roger Schvaneveldt
  • Thomas C. Rindflesch
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7620)


This paper addresses the issue of analogical inference, and its potential role as the mediator of new therapeutic discoveries, by using disjunction operators based on quantum connectives to combine many potential reasoning pathways into a single search expression. In it, we extend our previous work in which we developed an approach to analogical retrieval using the Predication-based Semantic Indexing (PSI) model, which encodes both concepts and the relationships between them in high-dimensional vector space. As in our previous work, we leverage the ability of PSI to infer predicate pathways connecting two example concepts, in this case comprising of known therapeutic relationships. For example, given that drug x TREATS disease z, we might infer the predicate pathway drug x INTERACTS_WITH gene y ASSOCIATED_WITH disease z, and use this pathway to search for drugs related to another disease in similar ways. As biological systems tend to be characterized by networks of relationships, we evaluate the ability of quantum-inspired operators to mediate inference and retrieval across multiple relations, by testing the ability of different approaches to recover known therapeutic relationships. In addition, we introduce a novel complex vector based implementation of PSI, based on Plate’s Circular Holographic Reduced Representations, which we utilize for all experiments in addition to the binary vector based approach we have applied in our previous research.


Distributional Semantics Vector Symbolic Architectures Literature-based Discovery Abductive Reasoning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bruza, P.: Semantic space: Bridging the divide between cognitive science, information processing technology and quantum mechanics. In: Proc. Inform. Symp. on Inform. Tech. (ITsim 2008), pp. 1–9 (2008)Google Scholar
  2. 2.
    Cohen, T., Widdows, D., Schvaneveldt, R., Rindflesch, T.C.: Finding Schizophrenia’s Prozac Emergent Relational Similarity in Predication Space. In: Song, D., Melucci, M., Frommholz, I., Zhang, P., Wang, L., Arafat, S. (eds.) QI 2011. LNCS, vol. 7052, pp. 48–59. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Dudley, J., Schadt, E., et al.: Drug discovery in a multidimensional world: systems, patterns, and networks. J. Cardiovasc Transl. Res. 3(5), 438–447 (2010)CrossRefGoogle Scholar
  4. 4.
    Widdows, D., Cohen, T., De Vine, L.: Real, complex, and binary semantic vectors. In: Proc. Sixth Intl. Symp. on Quantum Interactions, Paris, France (2012)Google Scholar
  5. 5.
    Landauer, T., Dumais, S.: A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psych. Review 104, 211–240 (1997)CrossRefGoogle Scholar
  6. 6.
    Swanson, D.R.: Fish oil, raynaud’s syndrome, and undiscovered public knowledge. Perspect Biol. Med. 30(1), 7–18 (1986)Google Scholar
  7. 7.
    Gordon, M.D., Dumais, S.: Using latent semantic indexing for literature based discovery. Journal of the American Society for Information Science 49, 674–685 (1998)CrossRefGoogle Scholar
  8. 8.
    Cole, R.J., Bruza, P.D.: A Bare Bones Approach to Literature-Based Discovery: An Analysis of the Raynaud’s/Fish-Oil and Migraine-Magnesium Discoveries in Semantic Space. In: Hoffmann, A., Motoda, H., Scheffer, T. (eds.) DS 2005. LNCS (LNAI), vol. 3735, pp. 84–98. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Cohen, T., Schvaneveldt, R., Widdows, D.: Reflective random indexing and indirect inference: A scalable method for discovery of implicit connections. Journal of Biomedical Informatics 43, 240–256 (2010)CrossRefGoogle Scholar
  10. 10.
    Hristovski, D., Friedman, C., Rindflesch, T., Peterlin, B.: Literature-based knowledge discovery using natural language processing. In: Bruza, P., Weeber, M. (eds.) Literature Based Discovery, pp. 133–152. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Ahlers, C., Hristovski, D., Kilicoglu, H., Rindflesch, T.: Using the Literature-Based discovery paradigm to investigate drug mechanisms. In: AMIA Annu. Symp. Proc., pp. 6–10 (2007)Google Scholar
  12. 12.
    Wren, J.: The ‘open discovery’challenge. In: Literature-Based Discovery, pp. 39–55 (2008)Google Scholar
  13. 13.
    Swanson, D.R.: Medical literature as a potential source of new knowledge. Bulletin of the Medical Library Association 78 (1990)Google Scholar
  14. 14.
    Cohen, T., Schvaneveldt, R., Rindflesch, T.: Predication-based semantic indexing: Permutations as a means to encode predications in semantic space. In: AMIA Annu. Symp. Proc., pp. 114–118 (2009)Google Scholar
  15. 15.
    Cohen, T., Widdows, D., Schvaneveldt, R.W., Rindflesch, T.C.: Logical leaps and quantum connectives: Forging paths through predication space. In: Proc. AAAI Fall Symp. on Quantum Informatics for Cognitive, Social, and Semantic Processes, pp. 11–13 (2010)Google Scholar
  16. 16.
    Widdows, D., Peters, S.: Word vectors and quantum logic experiments with negation and disjunction. In: Proc. 8th Math. of Language Conference, Bloomington, Indiana (2003)Google Scholar
  17. 17.
    Gayler, R.W.: Vector symbolic architectures answer jackendoff’s challenges for cognitive neuroscience. In: Slezak, P. (ed.) ICCS/ASCS International Conference on Cognitive Science, pp. 133–138. University of New South Wales, Sydney (2004)Google Scholar
  18. 18.
    Smolensky, P.: Tensor product variable binding and the representation of symbolic structures in connectionist systems. Artificial Intelligence 46(1-2), 159–216 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Kanerva, P.: Binary Spatter-Coding of Ordered k-tuples. In: Vorbrüggen, J.C., von Seelen, W., Sendhoff, B. (eds.) ICANN 1996. LNCS, vol. 1112, Springer, Heidelberg (1996)Google Scholar
  20. 20.
    Plate, T.A.: Holographic Reduced Representation: Distributed Representation for Cognitive Structures. CSLI Publications, Stanfpord (2003)Google Scholar
  21. 21.
    De Vine, L., Bruza, P.: Semantic oscillations: Encoding context and structure in complex valued holographic vectors. In: Proc. AAAI Fall Symp. on Quantum Informatics for Cognitive, Social, and Semantic Processes (2010)Google Scholar
  22. 22.
    Rindflesch, T.C., Fiszman, M.: The interaction of domain knowledge and linguistic structure in natural language processing: interpreting hypernymic propositions in biomedical text. Journal of Biomedical Informatics 36, 462–477 (2003)CrossRefGoogle Scholar
  23. 23.
    Bodenreider, O.: The unified medical language system (UMLS): integrating biomedical terminology. Nucleic Acids Research 32, D267 (2004) (database Issue)CrossRefGoogle Scholar
  24. 24.
    Kilicoglu, H., Fiszman, M., Rosemblat, G., Marimpietri, S., Rindflesch, T.C.: Arguments of nominals in semantic interpretation of biomedical text. In: Proceedings of the 2010 Workshop on Biomedical Natural Language Processing, pp. 46–54 (2010)Google Scholar
  25. 25.
    Eliasmith, C., Thagard, P.: Integrating structure and meaning: A distributed model of analogical mapping. Cognitive Science 25(2), 245–286 (2001)CrossRefGoogle Scholar
  26. 26.
    Kanerva, P.: What we mean when we say “What’s the dollar of mexico?”: Prototypes and mapping in concept space. In: Proc. AAAI Fall Symp. on Quantum Informatics for Cognitive, Social, and Semantic Processes (2010)Google Scholar
  27. 27.
    Holyoak, K.J., Thagard, P.: Mental Leaps: Analogy in Creative Thought. MIT Press (1995)Google Scholar
  28. 28.
    Birkhoff, G., Neumann, J.V.: The logic of quantum mechanics. The Annals of Mathematics 37(4), 823–843 (1936)CrossRefGoogle Scholar
  29. 29.
    Cohen, T., Widdows, D., Schvaneveldt, R., Davies, P., Rindflesch, T.: Discovering discovery patterns with predication-based semantic indexing. Journal of Biomedical Informatics (July 2012) [epub ahead of print]Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Trevor Cohen
    • 1
  • Dominic Widdows
    • 2
  • Lance De Vine
    • 3
  • Roger Schvaneveldt
    • 4
  • Thomas C. Rindflesch
    • 5
  1. 1.School of Biomedical Informatics at HoustonUniversity of TexasUSA
  2. 2.Microsoft BingUSA
  3. 3.Queensland University of TechnologyAustralia
  4. 4.Arizona State UniversityUSA
  5. 5.National Library of MedicineUSA

Personalised recommendations