Fractals, Dissipation and Coherent States

  • Giuseppe Vitiello
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7620)


Self-similarity properties of fractal structures, including the logarithmic spiral, are related to quantum dissipative dynamics, generalized squeezed coherent states and noncommutative geometry in the plane. The rôle played by the fractal Hamiltonian which actually turns out to be the fractal free energy is discussed. Time evolution characterized by the breakdown of time-reversal symmetry is controlled by the entropy. Coherent boson condensation induced by the generators of the coherent states is shown to control the formation of fractals. Vice-versa, coherent generalized states are recognized to possess self-similar fractal structure. The global nature of fractals appears to emerge from irreversible coherent local deformation processes.


fractals logarithmic spiral dissipation squeezed coherent states noncommutative geometry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vitiello, G.: Fractals and the Fock-Bargmann Representation of Coherent States. In: Bruza, P., Sofge, D., Lawless, W., van Rijsbergen, K., Klusch, M., et al. (eds.) QI 2009. LNCS, vol. 5494, pp. 6–16. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Vitiello, G.: Coherent states, fractals and brain waves. New Mathematics and Natural Computation 5, 245–264 (2009); Vitiello, G.: Topological defects, fractals and the structure of quantum field theory. In: Licata, I., Sakaji, A.J. (eds.) Vision of Oneness, pp. 155–180. Aracne Edizioni, Roma (2011)Google Scholar
  3. 3.
    Perelomov, A.: Generalized Coherent States and Their Applications. Springer, Heidelberg (1986)zbMATHCrossRefGoogle Scholar
  4. 4.
    Peitgen, H.O., Jürgens, H., Saupe, D.: Chaos and Fractals. New Frontiers of Science. Springer, Heidelberg (1986)Google Scholar
  5. 5.
    Fodor, J., Piattelli-Palmarini, M.: What Darwin got wrong. Farrar Straus and Giroux, New York (2010)Google Scholar
  6. 6.
    Piattelli-Palmarini, M., Uriagereka, J.: Still a bridge too far? Biolinguistic questions for grounding language on brains. Physics of Life Reviews 5, 207–224 (2008)CrossRefGoogle Scholar
  7. 7.
    Bunde, A., Havlin, S. (eds.): Fractals in Science. Springer, Heidelberg (1995)Google Scholar
  8. 8.
    Bak, P., Creutz, M.: Fractals and self-organized criticality. In: Bunde, A., Havlin, S. (eds.) Fractals in Science, pp. 1–25. Springer, Heidelberg (1995)Google Scholar
  9. 9.
    Vitiello, G.: Fractals, coherent states and self-similarity induced noncommutative geometry. Phys. Lett. A 376, 2527–2532 (2012)CrossRefGoogle Scholar
  10. 10.
    Celeghini, E., Rasetti, M., Vitiello, G.: Quantum dissipation. Annals Phys. 215, 156–170 (1992)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Blasone, M., Srivastava, Y.N., Vitiello, G., Widom, A.: Phase coherence and quantum Brownian motion. Annals Phys. 267, 61–74 (1998); Graziano, E., Pashaev, O.K., Vitiello, G.: Dissipation and topologically massive gauge theories in pseudoeuclidean plane. Annals Phys. 252, 115–132 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Srivastava, Y.N., Vitiello, G., Widom, A.: Quantum dissipation and quantum noise. Annals Phys. 238, 200–207 (1995)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Vitiello, G.: Links. Relating different physical systems through the common QFT algebraic structure. In: Unruh, W.G., Schuetzhold, R. (eds.) Quantum Analogues: From Phase Transitions to Black Holes and Cosmology. Lectures Notes in Physics, vol. 718, pp. 165–205. Springer, Heidelberg (2007); hep-th/0610094CrossRefGoogle Scholar
  14. 14.
    Blasone, M., Jizba, P., Vitiello, G.: Quantum Field Theory and its macroscopic manifestations. Imperial College Press, London (2011)CrossRefGoogle Scholar
  15. 15.
    Schwinger, J.: Brownian Motion of a Quantum Oscillator. J. Math. Phys. 2, 407–433 (1961)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    ’t Hooft, G.: Quantum Gravity as a Dissipative Deterministic System. Class. Quant. Grav. 16, 3263–3279 (1999); ’t Hooft, G.: In: Basics and Highlights of Fundamental Physics. Erice (1999) [arXiv:hep-th/0003005] ’t Hooft, G.: A mathematical theory for deterministic quantum mechanics. J. Phys.: Conf. Series 67, 012015 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Blasone, M., Jizba, P., Vitiello, G.: Dissipation and quantization. Phys. Lett. A 287, 205–210 (2001); Blasone, M., Celeghini, E., Jizba, P., Vitiello, G.: Quantization, group contraction and zero point energy. Phys. Lett. A 310, 393–399 (2003); Blasone, M., Jizba, P., Scardigli, F., Vitiello, G.: Dissipation and quantization in composite systems. Phys. Lett. A 373, 4106–4112 (2009) Google Scholar
  18. 18.
    Umezawa, H., Matsumoto, H., Tachiki, M.: Thermo Field Dynamics and Condensed States. North-Holland, Amsterdam (1982)Google Scholar
  19. 19.
    Celeghini, E., De Martino, S., De Siena, S., Rasetti, M., Vitiello, G.: Quantum groups, coherent states, squeezing and lattice quantum mechanics. Annals Phys. 241, 50–67 (1995); Celeghini, E., Rasetti, M., Tarlini, M., Vitiello, G.: SU(1,1) Squeezed States as Damped Oscillators. Mod. Phys. Lett. B 3, 1213–1220 (1989); Celeghini, E., Rasetti, M., Vitiello, G.: On squeezing and quantum groups. Phys. Rev. Lett. 66, 2056–2059 (1991) Google Scholar
  20. 20.
    Sivasubramanian, S., Srivastava, Y.N., Vitiello, G., Widom, A.: Quantum dissipation induced noncommutative geometry. Phys. Lett. A 311, 97–105 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Freeman, W.J., Livi, R., Obinata, M., Vitiello, G.: Cortical phase transitions, non-equilibrium thermodynamics and the time-dependent Ginzburg-Landau equation. Int. J. Mod. Phys. B 26, 1250035 (2012) arXiv:1110.3677v1 []Google Scholar
  22. 22.
    Celeghini, E., De Martino, S., De Siena, S., Iorio, A., Rasetti, M., Vitiello, G.: Thermo field dynamics and quantum algebras. Phys. Lett. A 244, 455–461 (1998)CrossRefGoogle Scholar
  23. 23.
    Iorio, A., Vitiello, G.: Quantum groups and Von Neumann theorem. Mod. Phys. Lett. B 8, 269–276 (1994)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Banerjee, R.: Dissipation and noncommutativity in planar quantum mechanics. Mod. Phys. Lett. A 17, 631–645 (2002); Banerjee, R., Mukherjee, P.: A Canonical approach to dissipation. J. Phys. A: Math. Gen. 35, 5591–5598 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Chen, Y.S., Choi, W., Papanikolaou, S., Sethna, J.P.: Bending Crystals: Emergence of fractal dislocation structures. Phys. Rev. Lett. 105, 105501 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Giuseppe Vitiello
    • 1
  1. 1.Dipartimento di Fisica “E. R. Caianiello” and Istituto Nazionale di Fisica NucleareUniversitá di SalernoFiscianoItaly

Personalised recommendations