Advertisement

Quantum-Like Behavior of Classical Systems

  • Thomas Filk
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7620)

Abstract

Bohmian mechanics is an example for a classical theory with a (Newtonian) ontology which reproduces all features of quantum mechanics. It is often used as a “classical” formulation of quantum mechanics, but in this article we invert the argument: Bohmian mechanics proves that there are classical systems which can show a quantum-like behavior; in particular, such models are able to explain non-classical probabilities. We analyze the general structure of Bohmian-type models and argue, that neural processes related to the correlates of mental states are likely to follow a dynamics which is similar to this class of models. Therefore, it may not be too surprising that cognitive phenomena under certain circumstances show a quantum-like behavior.

Keywords

Non-classical probability Bohmian mechanics Neural correlates of mental processes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aerts, D., Aerts, S.: Applications of quantum statistics in psychological studies of decision processes. Foundations of Science, 85–97 (1994)Google Scholar
  2. 2.
    Aerts, D.: Quantum Structure in Cognition. Journal of Mathematical Psychology 53(5), 314–348 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Atmanspacher, H.: Quantum Approaches to Consciousness. Stanford Encyclopedia of Philosophy, http://plato.stanford.edu/entries/qt-consciousness/
  4. 4.
    Atmanspacher, H., Filk, T., beim Graben, P.: Can classical epistemic states be entangles? In: Bruza, P., et al. (eds.) Quantum Intercation - 2011, pp. 128–137. Springer, Berlin (2011)CrossRefGoogle Scholar
  5. 5.
    beim Graben, P., Atmanspacher, H.: Complementarity in classical dynamical systems. Foundations of Physics 36, 291–306 (2006)Google Scholar
  6. 6.
    Bell, J.: On the Problem of Hidden Variables in Quantum Mechanics. Reviews of Modern Physics 38(3), 447–452 (1966)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Bohm, D.J.: A Suggested Interpretation of the Quantum Theory in Terms of “Hidden” Variables I & II. Phys. Rev. 85, 166 & 180 (1952)Google Scholar
  8. 8.
    Bruza, P.D., Kitto, K., Nelson, D., McEvoy, C.L.: Is there something quantum-like about the human mental lexicon? Journal of Mathematical Psychology 53, 362–377 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Busemeyer, J.R., Wang, Z., Townsend, J.T.: Quantum dynamics of human decision making. Journal of Mathematical Psychology 50, 220–241 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Busemeyer, J.R., Pothos, E., Franco, R., Trueblood, J.S.: A quantum theoretical explanation for probability judgement errors. Psychological Review 108, 193–218 (2011)CrossRefGoogle Scholar
  11. 11.
    de Broglie, L.: Wave mechanics and the atomic structure of matter and of radiation. Le Journal de Physique et le Radium 8, 225 (1927); see also Bacciagaluppi, G., Valentini, A.: Quantum Theory at the Crossroads – Reconsidering the 1927 Solvay Conference. Cambridge University Press (2009)Google Scholar
  12. 12.
    Cushing, J.T., Fine, A., Goldstein, S.: Bohmian Mechanics and Quantum Theory: An Appraisal. Boston Studies in the Philosophy of Science, vol. 184. Springer, Netherlands (1996)Google Scholar
  13. 13.
    Filk, T., von Müller, A.: Quantum Physics and Consciousness: The Quest for a Common Conceptual Foundation. Mind and Matter 7(1), 59–79 (2009)Google Scholar
  14. 14.
    Gabora, L., Aerts, D.: Contextualizing concepts using a mathematical generalization of the quantum formalism. Journal of Experimental and Theoretical Artificial Intelligence, 327–358 (2002)Google Scholar
  15. 15.
    Holland, P.R.: The Quantum Theory of Motion — An Account of the DeBroglie-Bohm Causal Interpretation of Quantum Mechanics. Cambridge University Press (1993)Google Scholar
  16. 16.
    Jammer, M.: The Philosophy of Quantum Mechanics: The Interpretations of Quantum Mechanics in Historical Perspective. Wiley-Interscience, New York (1974)Google Scholar
  17. 17.
    Special Issue: Quantum Cognition; Journal of Mathematical Psychology 53(5) (2009)Google Scholar
  18. 18.
    Khrennikov, A.Y.: Classical and quantum mechanics on information spaces with applications to cognitive, psychological, social and anomalous phenomena. Foundations of Physics 29, 1065–1098 (1999)MathSciNetCrossRefGoogle Scholar
  19. 19.
    von Neumann, J.: Mathematische Grundlagen der Quantenmechanik. Springer (1932); Mathematical Foundations of Quantum Mechanics. Princeton University Press (1952) Google Scholar
  20. 20.
    Osherson, D.N., Smith, E.E.: On the adequacy of prototype theory as a theory of concepts. Cognition 9, 35–58 (1981)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Thomas Filk
    • 1
    • 2
    • 3
  1. 1.Institute for PhysicsUniversity of FreiburgFreiburgGermany
  2. 2.Parmenides Foundation for the Study of ThinkingMunichGermany
  3. 3.Institute of Frontier Areas in Psychology and Mental HealthFreiburgGermany

Personalised recommendations