Quantum-Like Behavior of Classical Systems

  • Thomas Filk
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7620)


Bohmian mechanics is an example for a classical theory with a (Newtonian) ontology which reproduces all features of quantum mechanics. It is often used as a “classical” formulation of quantum mechanics, but in this article we invert the argument: Bohmian mechanics proves that there are classical systems which can show a quantum-like behavior; in particular, such models are able to explain non-classical probabilities. We analyze the general structure of Bohmian-type models and argue, that neural processes related to the correlates of mental states are likely to follow a dynamics which is similar to this class of models. Therefore, it may not be too surprising that cognitive phenomena under certain circumstances show a quantum-like behavior.


Non-classical probability Bohmian mechanics Neural correlates of mental processes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aerts, D., Aerts, S.: Applications of quantum statistics in psychological studies of decision processes. Foundations of Science, 85–97 (1994)Google Scholar
  2. 2.
    Aerts, D.: Quantum Structure in Cognition. Journal of Mathematical Psychology 53(5), 314–348 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Atmanspacher, H.: Quantum Approaches to Consciousness. Stanford Encyclopedia of Philosophy,
  4. 4.
    Atmanspacher, H., Filk, T., beim Graben, P.: Can classical epistemic states be entangles? In: Bruza, P., et al. (eds.) Quantum Intercation - 2011, pp. 128–137. Springer, Berlin (2011)CrossRefGoogle Scholar
  5. 5.
    beim Graben, P., Atmanspacher, H.: Complementarity in classical dynamical systems. Foundations of Physics 36, 291–306 (2006)Google Scholar
  6. 6.
    Bell, J.: On the Problem of Hidden Variables in Quantum Mechanics. Reviews of Modern Physics 38(3), 447–452 (1966)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Bohm, D.J.: A Suggested Interpretation of the Quantum Theory in Terms of “Hidden” Variables I & II. Phys. Rev. 85, 166 & 180 (1952)Google Scholar
  8. 8.
    Bruza, P.D., Kitto, K., Nelson, D., McEvoy, C.L.: Is there something quantum-like about the human mental lexicon? Journal of Mathematical Psychology 53, 362–377 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Busemeyer, J.R., Wang, Z., Townsend, J.T.: Quantum dynamics of human decision making. Journal of Mathematical Psychology 50, 220–241 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Busemeyer, J.R., Pothos, E., Franco, R., Trueblood, J.S.: A quantum theoretical explanation for probability judgement errors. Psychological Review 108, 193–218 (2011)CrossRefGoogle Scholar
  11. 11.
    de Broglie, L.: Wave mechanics and the atomic structure of matter and of radiation. Le Journal de Physique et le Radium 8, 225 (1927); see also Bacciagaluppi, G., Valentini, A.: Quantum Theory at the Crossroads – Reconsidering the 1927 Solvay Conference. Cambridge University Press (2009)Google Scholar
  12. 12.
    Cushing, J.T., Fine, A., Goldstein, S.: Bohmian Mechanics and Quantum Theory: An Appraisal. Boston Studies in the Philosophy of Science, vol. 184. Springer, Netherlands (1996)Google Scholar
  13. 13.
    Filk, T., von Müller, A.: Quantum Physics and Consciousness: The Quest for a Common Conceptual Foundation. Mind and Matter 7(1), 59–79 (2009)Google Scholar
  14. 14.
    Gabora, L., Aerts, D.: Contextualizing concepts using a mathematical generalization of the quantum formalism. Journal of Experimental and Theoretical Artificial Intelligence, 327–358 (2002)Google Scholar
  15. 15.
    Holland, P.R.: The Quantum Theory of Motion — An Account of the DeBroglie-Bohm Causal Interpretation of Quantum Mechanics. Cambridge University Press (1993)Google Scholar
  16. 16.
    Jammer, M.: The Philosophy of Quantum Mechanics: The Interpretations of Quantum Mechanics in Historical Perspective. Wiley-Interscience, New York (1974)Google Scholar
  17. 17.
    Special Issue: Quantum Cognition; Journal of Mathematical Psychology 53(5) (2009)Google Scholar
  18. 18.
    Khrennikov, A.Y.: Classical and quantum mechanics on information spaces with applications to cognitive, psychological, social and anomalous phenomena. Foundations of Physics 29, 1065–1098 (1999)MathSciNetCrossRefGoogle Scholar
  19. 19.
    von Neumann, J.: Mathematische Grundlagen der Quantenmechanik. Springer (1932); Mathematical Foundations of Quantum Mechanics. Princeton University Press (1952) Google Scholar
  20. 20.
    Osherson, D.N., Smith, E.E.: On the adequacy of prototype theory as a theory of concepts. Cognition 9, 35–58 (1981)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Thomas Filk
    • 1
    • 2
    • 3
  1. 1.Institute for PhysicsUniversity of FreiburgFreiburgGermany
  2. 2.Parmenides Foundation for the Study of ThinkingMunichGermany
  3. 3.Institute of Frontier Areas in Psychology and Mental HealthFreiburgGermany

Personalised recommendations