Quantum Entanglement and the Issue of Selective Influences in Psychology: An Overview

  • Ehtibar N. Dzhafarov
  • Janne V. Kujala
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7620)


Similar formalisms have been independently developed in psychology, to deal with the issue of selective influences (deciding which of several experimental manipulations selectively influences each of several, generally non-independent, response variables), and in quantum mechanics (QM), to deal with the EPR entanglement phenomena (deciding whether an EPR experiment allows for a “classical” account). The parallels between these problems are established by observing that any two noncommuting measurements in QM are mutually exclusive and can therefore be treated as analogs of different values of one and the same input. Both problems reduce to that of the existence of a jointly distributed system of random variables, one variable for every value of every input (in psychology) or every measurement on every particle involved (in an EPR experiment). We overview three classes of necessary conditions (some of them also sufficient under additional constraints) for the existence of such joint distributions.


Bell-CHSH-Fine inequalities cosphericity test EPR paradigm joint distribution criterion linear feasibility test non-commuting measurements pseudo-quasi-metrics on random variables quantum entanglement selective influences 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Basoalto, R.M., Percival, I.C.: BellTest and CHSH experiments with more than two settings. Journal of Physics A: Mathematical & General 36, 7411–7423 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Bell, J.: On the Einstein-Podolsky-Rosen paradox. Physics 1, 195–200 (1964)Google Scholar
  3. 3.
    Bohm, D., Aharonov, Y.: Discussion of Experimental Proof for the Paradox of Einstein, Rosen and Podolski. Physical Review 108, 1070–1076 (1957)CrossRefGoogle Scholar
  4. 4.
    Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Physical Review Letters 23, 880–884 (1969)CrossRefGoogle Scholar
  5. 5.
    Dzhafarov, E.N.: Conditionally selective dependence of random variables on external factors. Journal of Mathematical Psychology 43, 123–157 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Dzhafarov, E.N.: Unconditionally selective dependence of random variables on external factors. Journal of Mathematical Psychology 45, 421–451 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Dzhafarov, E.N.: Selective influence through conditional independence. Psychometrika 68, 7–26 (2003)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Dzhafarov, E.N.: Thurstonian-type representations for “same-different” discriminations: Probabilistic decisions and interdependent images. Journal of Mathematical Psychology 47, 229–243 (2003) see Dzhafarov, E.N.: Corrigendum to “Thurstonian-type representations for ‘same–different’ discriminations: Probabilistic decisions and interdependent images.” Journal of Mathematical Psychology 50, 511 (2006) Google Scholar
  9. 9.
    Dzhafarov, E.N., Gluhovsky, I.: Notes on selective influence, probabilistic causality, and probabilistic dimensionality. Journal of Mathematical Psychology 50, 390–401 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Dzhafarov, E.N., Kujala, J.V.: The Joint Distribution Criterion and the Distance Tests for Selective Probabilistic Causality. Frontiers in Quantitative Psychology and Measurement 1, 151 (2010), doi: 10.3389/fpsyg.2010.0015Google Scholar
  11. 11.
    Dzhafarov, E.N., Kujala, J.V.: Selectivity in probabilistic causality: Where psychology runs into quantum physics. Journal of Mathematical Psychology 56, 54–63 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Dzhafarov, E.N., Kujala, J.V.: Order-distance and other metric-like functions on jointly distributed random variables. Proceedings of the American Mathematical Society (2011) (in press)Google Scholar
  13. 13.
    Dzhafarov, E.N., Schweickert, R., Sung, K.: Mental architectures with selectively influenced but stochastically interdependent components. Journal of Mathematical Psychology 48, 51–64 (2004)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Einstein, A., Podolsky, B., Rosen, N.: Can Quantum-Mechanical Description of Physical Reality be Considered Complete? Physical Review 47, 777–780 (1935)zbMATHCrossRefGoogle Scholar
  15. 15.
    Fine, A.: Joint distributions, quantum correlations, and commuting observables. Journal of Mathematical Physics 23, 1306–1310 (1982)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Fine, A.: Hidden variables, joint probability, and the Bell inequalities. Physical Review Letters 48, 291–295 (1982)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Greenberger, D.M., Horne, M.A., Zeilinger, A.: Going beyond Bell’s theorem. In: Kafatos, M. (ed.) Bell’s Theorem, Quantum Theory and Conceptions of the Universe, pp. 69–72. Kluwer, Dordrecht (1989)Google Scholar
  18. 18.
    Karmarkar, N.: A new polynomial-time algorithm for linear programming. Combinatorica 4, 373–395 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Kujala, J.V., Dzhafarov, E.N.: Testing for selectivity in the dependence of random variables on external factors. Journal of Mathematical Psychology 52, 128–144 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Kujala, J.V., Dzhafarov, E.N.: Regular Minimality and Thurstonian-type modeling. Journal of Mathematical Psychology 53, 486–501 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Pitowski, I.: Quantum Probability – Quantum Logic. Springer, Berlin (1989)Google Scholar
  22. 22.
    Sternberg, S.: The discovery of processing stages: Extensions of donders’ method. Acta Psychologica 30, 276–315 (1969)CrossRefGoogle Scholar
  23. 23.
    Suppes, P., Zanotti, M.: When are probabilistic explanations possible? Synthese 48, 191–199 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Townsend, J.T.: Uncovering mental processes with factorial experiments. Journal of Mathematical Psychology 28, 363–400 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Townsend, J.T., Schweickert, R.: Toward the trichotomy method of reaction times: Laying the foundation of stochastic mental networks. Journal of Mathematical Psychology 33, 309–327 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Werner, R.F., Wolf, M.M.: All multipartite Bell correlation inequalities for two dichotomic observables per site. arXiv:quant-ph/0102024v1 (2001) Google Scholar
  27. 27.
    Werner, R.F., Wolf, M.M.: Bell inequalities and entanglement. arXiv:quant-ph/0107093 v2 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ehtibar N. Dzhafarov
    • 1
  • Janne V. Kujala
    • 2
  1. 1.Purdue UniversityUSA
  2. 2.University of JyväskyläFinland

Personalised recommendations