Advertisement

Adaptive Dynamics and Its Application to Context Dependent Systems Breaking the Classical Probability Law

  • Masanari Asano
  • Irina Basieva
  • Andrei Khrennikov
  • Masanori Ohya
  • Yoshiharu Tanaka
  • Ichiro Yamato
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7620)

Abstract

There exist several phenomena (systems) breaking the classical probability laws. In this report, we present a new mathematical formula to compute the probability in those context dependent systems by using the concepts of the adaptive dynamics and the lifting.

Keywords

classical probability law quantum probability adaptive dynamics quantum channel lifting map 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Khrennikov, A.: On Quantum-Like Probabilistic Structure of Mental Information. Open Systems and Information Dynamics 11(3), 267–275 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Khrennikov, A.: Quantum-like brain:“Interference of minds”. BioSystems 84, 225–241 (2006)CrossRefGoogle Scholar
  3. 3.
    Fichtner, K.-H., Fichtner, L., Freudenberg, W., Ohya, M.: On a quantum model of the recognition process. QP-PQ:Quantum Prob. White Noise Analysis 21, 64–84 (2008)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Busemeyer, J.B., Wang, Z., Townsend, J.T.: Quantum dynamics of human decision making. J. Math. Psychology 50, 220–241 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Busemeyer, J.R., Matthews, M., Wang, Z.: A Quantum Information Processing Explanation of Disjunction Effects. In: Sun, R., Myake, N. (eds.) The 29th Annual Conference of the Cognitive Science Society and the 5th International Conference of Cognitive Science, pp. 131–135. Erlbaum, Mahwah (2006)Google Scholar
  6. 6.
    Busemeyer, J.R., Santuy, E., Lambert-Mogiliansky, A.: Comparison of Markov and quantum models of decision making. In: Bruza, P., Lawless, W., van Rijsbergen, K., Sofge, D.A., Coeke, B., Clark, S. (eds.) Quantum interaction: Proceedings of the Second Quantum Interaction Symposium, pp. 68–74. College Publications, London (2008)Google Scholar
  7. 7.
    Accardi, L., Khrennikov, A., Ohya, M.: The problem of quantum-like representation in economy, cognitive science, and genetics. In: Accardi, L., Freudenberg, W., Ohya, M. (eds.) Quantum Bio-Informatics II: From Quantum Information to Bio-Informatics, pp. 1–8. WSP, Singapore (2008)CrossRefGoogle Scholar
  8. 8.
    Accardi, L., Khrennikov, A., Ohya, M.: Quantum Markov Model for Data from Shafir-Tversky Experiments in Cognitive Psychology. Open Systems and Information Dynamics 16, 371–385 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Conte, E., Khrennikov, A., Todarello, O., Federici, A., Zbilut, J.P.: Mental States Follow Quantum Mechanics during Perception and Cognition of Ambiguous Figures. Open Systems and Information Dynamics 16, 1–17 (2009)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Khrennikov, A., Haven, E.: Quantum mechanics and violations of the sure-thing principle: the use of probability interference and other concepts. Journal of Mathematical Psychology 53, 378–388 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Khrennikov, A.: Ubiquitous quantum structure: from psychology to finance. Springer, Heidelberg (2010)zbMATHCrossRefGoogle Scholar
  12. 12.
    Khrennikov, A.: Contextual approach to quantum formalism. Fundamental Theories of Physics. Springer, Heidelberg (2009)zbMATHCrossRefGoogle Scholar
  13. 13.
    Asano, M., Ohya, M., Khrennikov, A.: Quantum-Like Model for Decision Making Process in Two Players Game. Foundations of Physics 41(3), 538–548 (2010)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Asano, M., Ohya, M., Tanaka, Y., Khrennikov, A., Basieva, I.: On application of Gorini-Kossakowski-Sudarshan-Lindblad equation in cognitive psychology. Open Systems & Information Dynamics 18(1), 55–69 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Basieva, I., Khrennikov, A., Ohya, M., Ichiro, Y.: Quantum-like interference effect in gene expression: glucose-lactose destructive interference. Syst. and Synth. Biol. 5(1-2), 59–68 (2010)CrossRefGoogle Scholar
  16. 16.
    Asano, M., Ohya, M., Tanaka, Y., Khrennikov, A., Basieva, I.: Quantum-like Representation of Bayesian Updating. In: American Institute of Physics 1327: Proceedings of the International Conference on Advances in Quantum Theory, pp. 57–62 (2011)Google Scholar
  17. 17.
    Ohya, M.: Note on quantum proability. L. Nuovo Cimento 38(11), 203–206 (1983)MathSciNetGoogle Scholar
  18. 18.
    Ohya, M.: On compound state and mutual information in quantum information theory. IEEE Trans. Information Theory 29, 770–777 (1983)zbMATHCrossRefGoogle Scholar
  19. 19.
    Ohya, M.: Complexities and their applications to characterization of chaos. International Journal of Theoretical Physics 37(1), 495–505 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Ohya, M.: Some aspects of quantum information theory and their applications to irreversible processes. Rep. Math. Phys. 27, 19–47 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Accardi, L., Ohya, M.: Compound Channels, Transition Expectations, and Liftings. Appl. Math. Optim. 39, 33–59 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Inoue, K., Ohya, M., Sato, K.: Application of chaos degree to some dynamical systems. Chaos, Soliton & Fractals 11, 1377–1385 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Ohya, M., Volovich, I.V.: New quantum algorithm for studying NP-complete problems. Rep. Math. Phys. 52(1), 25–33 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Ohya, M., Volovich, I.V.: Mathematical Foundations of Quantum Information and Computation and Its Applications to Nano-and Bio-systems. Springer (2011)Google Scholar
  25. 25.
    Inoue, K., Ohya, M., Volovich, I.V.: Semiclassical properties and chaos degree for the quantum baker’s map. Journal of Mathematical Physics 43(1) (2002)Google Scholar
  26. 26.
    Kossakowski, A., Ohya, M., Togawa, Y.: How can we observe and describe chaos? Open System and Information Dynamics 10(3), 221–233 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Accardi, L., Ohya, M.: A Stochastic Limit Approach to the SAT Problem. Open Systems and Information Dynamics 11, 1–16 (2004)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Ohya, M.: Adaptive Dynamics and its Applications to Chaos and NPC Problem. QP-PQ: Quantum Probability and White Noise Analysis Quantum Bio-Informatics 21, 181–216 (2007)MathSciNetGoogle Scholar
  29. 29.
    Accardi, L.: Urne e camaleonti: Dialogo sulla realta, le leggi del caso e la teoria quantistica. Il Saggiatore (1997) (English edition, World Scientific 2002; japanese edition, Makino 2002, russian edition, Regular and Chaotic dynamics 2002)Google Scholar
  30. 30.
    Asano, M., Ohya, M., Tanaka, T., Khrennikov, A., Basieva, I.: Quantum-like Representation of Bayesian Updating. In: American Institute of Physics 1327: Proceedings of the International Conference on Advances in Quantum Theory, pp. 57–62 (2011)Google Scholar
  31. 31.
    Inada, T., Kimata, K., Aiba, H.: Mechanism responsible for glucose-lactose diauxie in Escherichia coli challenge to the cAMP model. Genes and Cells 1, 293–301 (1996)CrossRefGoogle Scholar
  32. 32.
    Asano, M., Ohya, M., Tanaka, Y., Khrennikov, A., Basieva, I.: Quantum-like Bayesian Updating. TUS preprint (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Masanari Asano
    • 1
  • Irina Basieva
    • 2
  • Andrei Khrennikov
    • 2
  • Masanori Ohya
    • 1
  • Yoshiharu Tanaka
    • 1
  • Ichiro Yamato
    • 3
  1. 1.Department of Information SciencesTokyo University of ScienceNoda-shiJapan
  2. 2.International Center for Mathematical Modeling in Physics and Cognitive SciencesLinnaeus UniversityVäxjöSweden
  3. 3.Department of Biological Science and TechnologyTokyo University of ScienceNoda-shiJapan

Personalised recommendations