Entanglement of Conceptual Entities in Quantum Model Theory (QMod)

  • Diederik Aerts
  • Sandro Sozzo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7620)

Abstract

We have recently elaborated Quantum Model Theory (QMod) to model situations where the quantum effects of contextuality, interference, superposition, entanglement and emergence, appear independently of the microscopic nature of the entities giving rise to these situations. We have shown that QMod models without introducing linearity for the set of the states. In this paper we prove that QMod, although not using linearity for the state space, provides a method of identification for entangled states and an intuitive explanation for their occurrence. We illustrate this method for entanglement identification with concrete examples.

Keywords

Quantum cognition QMod entanglement concept combination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aerts, D., Sozzo, S.: Quantum Model Theory (QMod): Modeling Contextual Emergent Entangled Interfering Entities. In: Busemeyer, J.R., Dubois, F., Lambert-Mogiliansky, A. (eds.) QI 2012. LNCS, vol. 7620, pp. 126–137. Springer, Heidelberg (2012)Google Scholar
  2. 2.
    Aerts, D.: Quantum Structure in Cognition. J. Math. Psych. 53, 314–348 (2009)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Aerts, D.: Quantum Particles as Conceptual Entities: A Possible Explanatory Framework for Quantum Theory. Found. Sci. 14, 361–411 (2010)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Aerts, D.: Interpreting Quantum Particles as Conceptual Entities. Int. J. Theor. Phys. 49, 2950–2970 (2010)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Aerts, D.: A Potentiality and Conceptuality Interpretation of Quantum Physics. Philosophica 83, 15–52 (2010)Google Scholar
  6. 6.
    Aerts, D.: Being and Change: Foundations of a Realistic Operational Formalism. In: Aerts, D., Czachor, M., Durt, T. (eds.) Probing the Structure of Quantum Mechanics: Nonlinearity, Nonlocality, Probability and Axiomatics, pp. 71–110. World Scientific, Singapore (2002)CrossRefGoogle Scholar
  7. 7.
    Gabora, L., Aerts, D.: Contextualizing Concepts Using a Mathematical Generalization of the Quantum Formalism. J. Exp. Theor. Art. Int. 14, 327–358 (2002)MATHCrossRefGoogle Scholar
  8. 8.
    Aerts, D., Gabora, L.: A Theory of Concepts and Their Combinations I: The Structure of the Sets of Contexts and Properties. Kybernetes 34, 167–191 (2005)MATHCrossRefGoogle Scholar
  9. 9.
    Aerts, D., Gabora, L.: A Theory of Concepts and Their Combinations II: A Hilbert Space Representation. Kybernetes 34, 192–221 (2005)MATHCrossRefGoogle Scholar
  10. 10.
    Gabora, L.: Cultural Evolution Entails (Creativity Entails (Concept Combination Entails Quantum Structure)). In: Bruza, P., Lawless, W., van Rijsbergen, K., Sofge, D. (eds.) Proceedings of the Association for the Advancement of Artificial Intelligence (AAAI) Spring Symposium 8: Quantum Interaction, March 26-28, pp. 106–113. Stanford University, Stanford (2007)Google Scholar
  11. 11.
    Nelson, D.L.: Entangled Associative Structures and Context. In: Bruza, P., Lawless, W., van Rijsbergen, K., Sofge, D. (eds.) Proceedings of the Association for the Advancement of Artificial Intelligence (AAAI) Spring Symposium 8: Quantum Interaction, March 26-28. Stanford University, Stanford (2007)Google Scholar
  12. 12.
    Gabora, L., Rosch, E., Aerts, D.: Toward an Ecological Theory of Concepts. Ecol. Psych. 20, 84–116 (2008)CrossRefGoogle Scholar
  13. 13.
    Flender, C., Kitto, K., Bruza, P.: Beyond Ontology in Information Systems. In: Bruza, P., Sofge, D., Lawless, W., van Rijsbergen, K., Klusch, M. (eds.) QI 2009. LNCS, vol. 5494, pp. 276–288. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Gabora, L., Aerts, D.: A Model of the Emergence and Evolution of Integrated Worldviews. J. Math. Psych. 53, 434–451 (2009)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    D’Hooghe, B.: The SCOP-formalism: An Operational Approach to Quantum Mechanics. In: AIP Conference Proceedings, vol. 1232, pp. 33–44 (2010)Google Scholar
  16. 16.
    Aerts, D., Czachor, M., Sozzo, S.: A Contextual Quantum-based Formalism for Population Dynamics. In: Proceedings of the AAAI Fall Symposium (FS-10-08), Quantum Informatics for Cognitive, Social, and Semantic Processes, pp. 22–25 (2010)Google Scholar
  17. 17.
    Veloz, T., Gabora, L., Eyjolfson, M., Aerts, D.: Toward a Formal Model of the Shifting Relationship between Concepts and Contexts during Associative Thought. In: Song, D., Melucci, M., Frommholz, I., Zhang, P., Wang, L., Arafat, S. (eds.) QI 2011. LNCS, vol. 7052, pp. 25–34. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Aerts, D., Sozzo, S.: Quantum Structure in Cognition: Why and How Concepts Are Entangled. In: Song, D., Melucci, M., Frommholz, I., Zhang, P., Wang, L., Arafat, S. (eds.) QI 2011. LNCS, vol. 7052, pp. 116–127. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  19. 19.
    Aerts, D.: A Possible Explanation for the Probabilities of Quantum Mechanics. J. Math. Phys. 27, 202–210 (1986)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Aerts, D.: Quantum Structures due to Fluctuations of the Measurement Situations. Int. J. Theor. Phys. 32, 2207–2220 (1993)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Aerts, D.: Quantum Structures, Separated Physical Entities and Probability. Found. Phys. 24, 1227–1259 (1994)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Aerts, D.: Quantum Structures: An Attempt to Explain Their Appearance in Nature. Int. J. Theor. Phys. 34, 1165–1186 (1995)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Aerts, D., Aerts, S.: The Hidden Measurement Formalism: Quantum Mechanics as a Consequence of Fluctuations on the Measurement. In: Ferrero, M., van der Merwe, A. (eds.) New Developments on Fundamental Problems in Quantum Physics, pp. 1–6. Springer, Dordrecht (1997)CrossRefGoogle Scholar
  24. 24.
    Aerts, D., Aerts, S., Coecke, B., D’Hooghe, B., Durt, T., Valckenborgh, F.: A Model with Varying Fluctuations in the Measurement Context. In: Ferrero, M., van der Merwe, A. (eds.) New Developments on Fundamental Problems in Quantum Physics, pp. 7–9. Springer, Dordrecht (1997)CrossRefGoogle Scholar
  25. 25.
    Aerts, D., Aerts, S., Durt, T., Lévêque, O.: Classical and Quantum Probability in the ε-model. Int. J. Theor. Phys. 38, 407–429 (1999)MATHCrossRefGoogle Scholar
  26. 26.
    Aerts, S.: Hidden Measurements from Contextual Axiomatics. In: Aerts, D., Czachor, M., Durt, T. (eds.) Probing the Structure of Quantum Mechanics: Nonlinearity, Nonlocality, Probability and Axiomatics, pp. 149–164. World Scientific, Singapore (2002)CrossRefGoogle Scholar
  27. 27.
    Aerts, S.: The Born Rule from a Consistency Requirement on Hidden Measurements in Complex Hilbert Space. Int. J. Theor. Phys. 44, 999–1009 (2005)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Aerts, S.: Quantum and Classical Probability as Bayes-optimal Observation (2006), http://uk.arxiv.org/abs/quant-ph/0601138
  29. 29.
    Aerts, D.: Example of a macroscopical situation that violates Bell inequalities. Lettere al Nuovo Cimento 34, 107–111 (1982)CrossRefGoogle Scholar
  30. 30.
    Aerts, D.: A mechanistic classical laboratory situation violating the Bell inequalities with 2\(\sqrt{2}\), exactly ‘in the same way’ as its violations by the EPR experiments. Helvetica Physica Acta 64, 1–23 (1991)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Diederik Aerts
    • 1
  • Sandro Sozzo
    • 1
  1. 1.Center Leo Apostel (CLEA)Vrije Universiteit Brussel (VUB)BrusselsBelgium

Personalised recommendations