Emergence and Instability of Individual Identity

  • Ariane Lambert-Mogiliansky
  • Jerome R. Busemeyer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7620)


The Type Indeterminacy model is a theoretical framework that uses some elements of quantum formalism to model the constructive preference perspective suggested by Kahneman and Tversky. In a dynamic decision context, type indeterminacy provides a framework for investigating the emergence and evolution of identity as the outcome of the interaction between multiple potential selves (eigentypes). We define a dynamic game among the selves with individual identity (preferences) as the state variable. In the Markov perfect equililibrium of the game, identity arises as ”a relational property” that does not pre-exist the decision context. The approach allows to characterize generic personality types and derive some comparitive static results.


indeterminacy decision-making identity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ainslie, G.: The Breakdown of Will. Cambridge University Press, Cambridge (2001)CrossRefGoogle Scholar
  2. 2.
    Beltrametti, E.G., Cassinelli, G.: The logic of Quantum Mechanics. In: Rota, G.C. (ed.) Encyclopedia of Mathematics and its Applications, vol. 15. Addison-Wesley, Boston (1981)Google Scholar
  3. 3.
    Bem, D.J.: Self Perception theory. Advances in Experimental Social Psychology 6, 1–62 (1972)CrossRefGoogle Scholar
  4. 4.
    Benabou, R., Tirole, J.: Willpower and personal rules. J. of Pol. Economy 112(4), 848–886 (2004)CrossRefGoogle Scholar
  5. 5.
    Benabou, R., Tirole, J.: Identity, morals and taboos: beleifs as assets. The Quarterly Journal of Economics 126, 805–855 (2011)zbMATHCrossRefGoogle Scholar
  6. 6.
    Bitbol: Reflective metaphysics: understanding quntum mechanics from a kantian viewpoint. Philosophica 83, 53–83 (2010)Google Scholar
  7. 7.
    Bodner, R., Prelec, D.: Self-signaling and diagnostic utility in everyday decision making. Psychol. Econ. Decis. 1, 105–126 (2003)Google Scholar
  8. 8.
    Busemeyer, J.R., Wang, Z., Townsend, J.T.: Quantum dynamics of human decision-Making. J. Math. Psychol. 50, 220–241 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Busemeyer, J.R.: Quantum information processing explanation for interaction between inferences and decisions. In: Proceedings of the Quantum Interaction Symposium, Arlington, Virginia Fall 2010. AAAI Press, Menlo Park (2010)Google Scholar
  10. 10.
    Busemeyer, J., Lambert-Mogiliansky, A.: An Exploration of Type Indeterminacy in Strategic Decision-Making. In: Bruza, P., Sofge, D., Lawless, W., van Rijsbergen, K., Klusch, M. (eds.) QI 2009. LNCS, vol. 5494, pp. 113–127. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Danilov, V.I., Lambert-Mogiliansky, A.: Measurable systems and behavioral sciences. Math. Soc. Sci. 55, 315–340 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Danilov, V.I., Lambert-Mogiliansky, A.: Expected utility under non-classical uncertainty. Theory Decis., 25–47 (2009)Google Scholar
  13. 13.
    Deutsch, D.: Quantum theory of propability and decisions. Proc. R. Soc. Lond. A 455, 3129–3137 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Franco, R.: The conjunction fallacy and interference effects (2007) arXiv:0708.3948v1Google Scholar
  15. 15.
    Fudenberg, D., Levine, D.K.: A dual self model of impulse control. Am. Econ. Rev. 96, 1449–1476 (2006)CrossRefGoogle Scholar
  16. 16.
    Fudenberg, D., Tirole, J.: Game Theory. MIT Press, Cambridge (1991)Google Scholar
  17. 17.
    Gul, F., Pesendorfer, W.: Temptation and self control. Econometrica 69, 1403–1436 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Gul, F., Pesendorfer, W.: Self control and the theory of consumption. Econometrica 72, 110–158 (2004)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Kahneman, D., Tversky, A.: Choices, Values and Frames. Cambridge University Press (2000)Google Scholar
  20. 20.
    Khrennikov, A.: Ubiquitous Quantum Structure—From Psychology to Finance. Springer, Heidelberg (2010)zbMATHCrossRefGoogle Scholar
  21. 21.
    Lambert-Mogiliansky, A., Zamir, S., Zwirn, H.: Type indeterminacy—A model of the KT(Khaneman Tversky)- man. J. Math. Psychol. 53, 349–361 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    McIntosh, D.: Foundation of Human Society. University of Chigago Press, Chicago (1969)Google Scholar
  23. 23.
    Maskin, E.S., Tirole, J.: Markov perfect equilibrium. J. Econ. Theory 100, 191–219 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    la Mura, P.: Correlated equilibria of classical strategies with quantum Signals. Int. J. Quantum Inf. 3, 183–188 (2005)zbMATHCrossRefGoogle Scholar
  25. 25.
    Peleg, B., Yaari, M.: On the existence of a consistent Course of Action when tastes are changing. Rev. Econ. Stud. 40, 391–401 (1973)zbMATHCrossRefGoogle Scholar
  26. 26.
    Strotz, R.H.: Myopya and time inconsistency in dynamic utility maximization. Rev. Econ. Stud. 23, 165–180 (1956)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ariane Lambert-Mogiliansky
    • 1
  • Jerome R. Busemeyer
    • 2
  1. 1.Paris School of EconomicsParisFrance
  2. 2.Indiana UniversityUSA

Personalised recommendations