Interactive Information Search in Text Data Collections

  • Marcin Deptuła
  • Julian Szymański
  • Henryk Krawczyk
Part of the Studies in Computational Intelligence book series (SCI, volume 467)


This article presents a new idea for retrieving in text repositories, as well as it describes general infrastructure of a system created to implement and test those ideas. The implemented system differs from today’s standard search engine by introducing process of interactive search with users and data clustering. We present the basic algorithms behind our system and measures we used for results evaluation. The achieved results indicates the proposed method can be useful for improvement of classical approaches based on keywords.


information retrieval search engines Wikipedia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Salton, G., McGill, M.: Introduction to modern information retrieval (1986)Google Scholar
  2. 2.
    Silverstein, C., Marais, H., Henzinger, M., Moricz, M.: Analysis of a very large web search engine query log. ACM SIGIR Forum.  33, 6–12 (1999)Google Scholar
  3. 3.
    Stonebraker, M., Wong, B., et al.: Deep-web search engine ranking algorithms. PhD thesis, Massachusetts Institute of Technology (2010)Google Scholar
  4. 4.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order to the web (1999)Google Scholar
  5. 5.
    Zhou, D., Bian, J., Zheng, S., Zha, H., Giles, C.: Exploring social annotations for information retrieval. In: Proceeding of the 17th International Conference on World Wide Web, pp. 715–724. ACM (2008)Google Scholar
  6. 6.
    Farnham, S., Lahav, M., Raskino, D., Cheng, L., Ickman, S., Laird-McConnell, T.: So. cl: An interest network for informal learning. In: Sixth International AAAI Conference on Weblogs and Social Media (2012)Google Scholar
  7. 7.
    Sanderson, M., Croft, W.: The history of information retrieval research. Proceedings of the IEEE 100 (2012) 0018–9219 Google Scholar
  8. 8.
    Scholer, F., Williams, H., Yiannis, J., Zobel, J.: Compression of inverted indexes for fast query evaluation. In: Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 222–229. ACM (2002)Google Scholar
  9. 9.
    Ester, M., Kriegel, H., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, vol. 1996, pp. 226–231. AAAI Press (1996)Google Scholar
  10. 10.
    Baeza-Yates, R., Ribeiro-Neto, B., et al.: Modern information retrieval, vol. 82. Addison-Wesley, New York (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Marcin Deptuła
    • 1
  • Julian Szymański
    • 1
  • Henryk Krawczyk
    • 1
  1. 1.Department of Computer Architecture, Faculty of Electronics, Telecommunications and InformaticsGdańsk University of TechnologyGdańskPoland

Personalised recommendations