Improving the Workflow for Creation of Textual Versions of Polish Historical Documents

  • Adam Dudczak
  • Miłosz Kmieciak
  • Cezary Mazurek
  • Maciej Stroiński
  • Marcin Werla
  • Jan Węglarz
Part of the Studies in Computational Intelligence book series (SCI, volume 467)

Abstract

This paper describes improvements which can be included in digitisation workflow to increase the number and enhance the quality of full text representations of historical documents.This kind of documents is well represented in Polish digital libraries and can offer interesting opportunities for digital humanities researchers. Proposed solution focuses on changing existing approach to OCR and simplifying the manual process of text correction through crowdsourcing. Tools required to implement these enhancements are available in Virtual Transcription Laboratory (VTL) prototype, developed in the framework of SYNAT (http:// www.synat.pl) project. In the last chapter paper describes results of the experiment with the custom OCR recognition profiles which proves that proposed approach is a viable alternative to existing OCR practices.

Keywords

OCR digital libraries digitsation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lewandowska, A., Werla, M.: PIONIER Network Digital Libraries Federation – Interoperability of Advanced Network Services Implemented on a Country Scale. Computational Methods in Science and Technology, 119–124 (2010)Google Scholar
  2. 2.
    Klijn, E.: The current state-of-art in newspaper digitization: A market perspective. D-Lib Magazine 14(2) (2008)Google Scholar
  3. 3.
    Dudczak, A., Mazurek, C., Stroiński, M., Werla, M., Węglarz, J.: Analiza dostępnych rozwiązań w zakresie automatycznego tworzenia transkrypcji różnego rodzaju materiałów tekstowych w szczególności manuskryptów, starodruków i książek współczesnych. Technical report, Poznań, Supercomputing and Networking Center, Poznań, SYNAT project (2010)Google Scholar
  4. 4.
    Smith, R.: An Overview of the Tesseract OCR Engine. In: Ninth International Conference on Document Analysis and Recognition, ICDAR 2007, vol. 2, pp. 629–633 (2007)Google Scholar
  5. 5.
    Holley, R.: Many Hands Make Light Work: Public Collaborative OCR Text Correction in Australian Historic Newspapers. National Library of Australia Staff Papers, 1–28 (March 2009)Google Scholar
  6. 6.
    Neudecker, C., Tzadok, A.: User Collaboration for Improving Access to Historical Texts. Liber Quarterly 20(1), 119–128 (2010)Google Scholar
  7. 7.
    Breuel, T.: The hOCR Microformat for OCR Workflow and Results. In: Ninth International Conference on Document Analysis and Recognition, ICDAR 2007, vol. 2, pp. 1063–1067 (2007)Google Scholar
  8. 8.
    Tanner, S., Munoz, T., Ros, P.H.: Measuring Mass Text Digitization Quality and Usefulness: Lessons Learned from Assessing the OCR Accuracy of the British Library’s 19th Century Online Newspaper Archive. DLib Magazine 15(78) (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Adam Dudczak
    • 1
  • Miłosz Kmieciak
    • 1
  • Cezary Mazurek
    • 1
  • Maciej Stroiński
    • 1
  • Marcin Werla
    • 1
  • Jan Węglarz
    • 1
  1. 1.Poznan Supercomputing and Networking CenterPoznanPoland

Personalised recommendations