On Fuzziness pp 389-393 | Cite as

Optimization under Fuzziness

  • Monga Kalonda Luhandjula
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 298)


Fuzzy set theory has a strong track record of success in the field of Optimization under uncertainty. It offers a proper framework for coming to grips with situations where imprecision and complexity are in the state of affairs in an Optimization setting. This paper presents my personal views on the descriptive and prescriptive power of Fuzzy set Theory in letting informational and intrinsic imprecision be taken into account in an Optimization model. The paper is jam-packed with information on how and why I started doing research in this field, along with encouragements and inspiration I got from Professors L. A. Zadeh and H. J. Zimmermann.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zadeh, L.A.: Fuzzy Sets. Information and Control 8, 338–353 (1965)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Zadeh, L.A.: The Concept of Linguistic Variable and its Application to Approximate Reasoning. Parts 1, 2, 3. Information Science 8, 199–249; 8, 301–357; 9, 43–80 (1975)Google Scholar
  3. 3.
    Karlin, S., Taylor, H.M.: A First Course in Stochastic Processes. Academic Press, New York (1975)MATHGoogle Scholar
  4. 4.
    Winkler, R.L.: Statistics: Probability, Inference and Decision. Holt, Rinehart and Winston, Chicago (1971)MATHGoogle Scholar
  5. 5.
    Winkler, R.L.: Introduction to Bayesian Inference and Decision. Holt, Rinehart and Winston, New York (1972)Google Scholar
  6. 6.
    Zimmermann, H.-J.: Description and Optimization of Fuzzy Systems. International Journal of General Systems 2, 209–215 (1976)MATHCrossRefGoogle Scholar
  7. 7.
    Ramik, J., Rimanek, J.: Inequality Relation Between Fuzzy Numbers and its Use in Fuzzy Optimization. Fuzzy Sets and Systems 16, 123–138 (1985)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Black, M.: Vagueness: An Exercise in Logical Analysis. Philosophy of Science 4, 427–455 (1937)CrossRefGoogle Scholar
  9. 9.
    Kubinski, T.: An Attempt to Bring Logic Nearer to Colloquial Language. Studia Logica 10, 61–72 (1960)CrossRefGoogle Scholar
  10. 10.
    Zimmermann, H.-J.: Fuzzy Programming and Linear Programming With Several Objective Functions. Fuzzy Sets and Systems 1, 46–55 (1978)CrossRefGoogle Scholar
  11. 11.
    Bellman, R.E., Zadeh, L.A.: Decision Making in a Fuzzy Environment. Management Science 17, 141–164 (1970)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Verdegay, J.L.: A Dual Approach to Solve the Fuzzy Linear Programming Problem. Fuzzy Sets and Systems 14, 131–141 (1984)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Rommelfanger, H.: A General Concept for Solving Linear Multicriteria Programming Problems With Crisp, Fuzzy or Stochastic Values. Fuzzy Sets and Systems 158, 1892–1904 (2007)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Luhandjula, M.K.: Fuzzy Mathematical Programming: Theory, Applications and Extensions. Journal of Uncertain Systems 1, 123–136 (2007)Google Scholar
  15. 15.
    Leberling, H.: On Finding Compromise Solutions in Multicriteria Problems Using the Min Operator. Fuzzy Sets and Systems 6, 105–118 (1981)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Luhandjula, M.K.: Fuzzy Approaches for Multiple Objective Linear Fractional Optimization. Fuzzy Sets and Systems 13, 11–24 (1984)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Buckley, J.J.: Possibility Programming. Fuzzy Sets and Systems 26, 135–138 (1988)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Sommer, G., Pollatschek, M.A.: A Fuzzy Programming to an Air Pollution Regulation Problem. European Journal of Operations Research 10, 303–313 (1978)Google Scholar
  19. 19.
    Zmeskel, Z.: Application of the Fuzzy-stochastic Methodology to Appraising the Firm Value as a European Call Option. European Journal of Operations Research 135, 303–310 (2001)CrossRefGoogle Scholar
  20. 20.
    Luhandjula, M.K.: Fuzzy Stochastic Linear Programming: Survey and Future Research Directions. European Journal of Operations Research 174, 1353–1367 (2006)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Van Hop, N.: Solvind Linear Programming Problems Under Fuzziness and Randomness Environment Using Attainment Values. Information Sciences 177, 2971–2984 (2007)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Liu, B.: Fuzzy Random Dependent-chance Programming. IEEE Transactions on Fuzzy Systems 9(5), 721–726 (2001)CrossRefGoogle Scholar
  23. 23.
    Mohan, C., Nguyen, H.T.: An Interactive Satisficing Method for Solving Multi-objective Mixed Fuzzy-stochastic Programming Problems. Fuzzy Sets and Systems 117, 61–79 (2001)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Zmeskel, Z.: Value at Risk Methodology Under Soft Condition Approach. European Journal of Operations Research 161, 337–347 (2005)CrossRefGoogle Scholar
  25. 25.
    Weber, K., Cromme, L.: Decision Support System in Marketing by Means of Fuzzy Stochastic Optimization. In: 75th Annual Meeting of the Gesellschaft für Angewandte Athematik and Mechanik (GAMM), Dresden, March 21-27 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Monga Kalonda Luhandjula
    • 1
  1. 1.Department of Decision SciencesUniversity of South AfricaUnisaSouth Africa

Personalised recommendations