Advertisement

Modified Constrained Differential Evolution for Solving Nonlinear Global Optimization Problems

  • Md. Abul Kalam Azad
  • M. G. P. Fernandes
Part of the Studies in Computational Intelligence book series (SCI, volume 465)

Abstract

Nonlinear optimization problems introduce the possibility of multiple local optima. The task of global optimization is to find a point where the objective function obtains its most extreme value while satisfying the constraints. Some methods try to make the solution feasible by using penalty function methods, but the performance is not always satisfactory since the selection of the penalty parameters for the problem at hand is not a straightforward issue. Differential evolution has shown to be very efficient when solving global optimization problems with simple bounds. In this paper, we propose a modified constrained differential evolution based on different constraints handling techniques, namely, feasibility and dominance rules, stochastic ranking and global competitive ranking and compare their performances on a benchmark set of problems. A comparison with other solution methods available in literature is also provided. The convergence behavior of the algorithm to handle discrete and integer variables is analyzed using four well-known mixed-integer engineering design problems. It is shown that our method is rather effective when solving nonlinear optimization problems.

Keywords

Nonlinear programming Global optimization Constraints handling Differential evolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ali, M.M., Khompatraporn, C., Zabinsky, Z.B.: A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems. J. Glob. Optim. 31, 635–672 (2005)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Barbosa, H.J.C., Lemonge, A.C.C.: A new adaptive penalty scheme for genetic algorithms. Inf. Sci. 156, 215–251 (2003)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Brest, J., Greiner, S., Bošković, B., Mernik, M., Žumer, V.: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput. 10, 646–657 (2006)CrossRefGoogle Scholar
  4. 4.
    Coello Coello, C.A.: Constraint-handling using an evolutionary multiobjective optimization technique. Civ. Eng. Environ. Syst. 17, 319–346 (2000)CrossRefGoogle Scholar
  5. 5.
    Coello Coello, C.A., Cortés, N.C.: Hybridizing a genetic algorithm with an artificial immune system for global optimization. Eng. Optim. 36, 607–634 (2004)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Deb, K.: An efficient constraint handling method for genetic algorithms. Comput. Methods Appl. Mech. Eng. 186, 311–338 (2000)MATHCrossRefGoogle Scholar
  7. 7.
    Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Dong, Y., Tang, J., Xu, B., Wang, D.: An application of swarm optimization to nonlinear programming. Comput. Math. Appl. 49, 1655–1668 (2005)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Erbatur, F., Hasançebi, O., Tütüncü, İ., Kılıç, H.: Optimal design of planar and space structures with genetic algorithms. Comput. Struct. 75, 209–224 (2000)CrossRefGoogle Scholar
  10. 10.
    Fletcher, R., Leyffer, S.: Nonlinear programming without a penalty function. Math. Program. 91, 239–269 (2002)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A modeling language for mathematical programming. Boyd & Fraser Publishing Co., Massachusetts (1993)Google Scholar
  12. 12.
    Hedar, A.R., Fukushima, M.: Derivative-free filter simulated annealing method for constrained continuous global optimization. J. Glob. Optim. 35, 521–549 (2006)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)Google Scholar
  14. 14.
    Kaelo, P., Ali, M.M.: A numerical study of some modified differential evolution algorithms. Eur. J. Oper. Res. 169, 1176–1184 (2006)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Lampinen, J., Zelinka, I.: Mixed integer-discrete-continuous optimization by differential evolution. In: Proceedings of the 5th International Conference on Soft Computing, pp. 71–76 (1999)Google Scholar
  16. 16.
    Ray, T., Tai, K.: An evolutionary algorithm with a multilevel pairing strategy for single and multiobjective optimization. Found. Comput. Decis. Sci. 26, 75–98 (2001)Google Scholar
  17. 17.
    Ray, T., Liew, K.M.: Society and civilization: An optimization algorithm based on the simulation of social behavior. IEEE Trans. Evol. Comput. 7, 386–396 (2003)CrossRefGoogle Scholar
  18. 18.
    Rocha, A.M.A.C., Fernandes, E.M.G.P.: Feasibility and Dominance Rules in the Electromagnetism-Like Algorithm for Constrained Global Optimization. In: Gervasi, O., Murgante, B., Laganà, A., Taniar, D., Mun, Y., Gavrilova, M.L. (eds.) ICCSA 2008, Part II. LNCS, vol. 5073, pp. 768–783. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Rocha, A.M.A.C., Fernandes, E.M.G.P.: Self adaptive penalties in the electromagnetism-like algorithm for constrained global optimization problems. In: Proceedings of the 8th World Congress on Structural and Multidisciplinary Optimization, pp. 1–10 (2009)Google Scholar
  20. 20.
    Rocha, A.M.A.C., Martins, T.F.M.C., Fernandes, E.M.G.P.: An augmented Lagrangian fish swarm based method for global optimization. J. Comput. Appl. Math. 235, 4611–4620 (2011)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Runarsson, T.P., Yao, X.: Stochastic ranking for constrained evolutionary optimization. IEEE Trans. Evol. Comput. 4, 284–294 (2000)CrossRefGoogle Scholar
  22. 22.
    Runarsson, T.P., Yao, X.: Constrained evolutionary optimization – the penalty function approach. In: Sarker, et al. (eds.) Evolutionary Optimization. International Series in Operations Research and Management Science, vol. 48, pp. 87–113. Springer, New York (2003)Google Scholar
  23. 23.
    Silva, E.K., Barbosa, H.J.C., Lemonge, A.C.C.: An adaptive constraint handling technique for differential evolution with dynamic use of variants in engineering optimization. Optim. Eng. 12, 31–54 (2011)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Storn, R., Price, K.: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11, 341–359 (1997)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Tomassetti, G.: A cost-effective algorithm for the solution of engineering problems with particle swarm optimization. Eng. Optim. 42(5), 471–495 (2010)CrossRefGoogle Scholar
  26. 26.
    Wang, J., Yin, Z.: A ranking selection-based particle swarm optimizer for engineering design optimization problems. Struct. Multidisc. Optim. 37(2), 131–147 (2008)CrossRefGoogle Scholar
  27. 27.
    Wang, P.-C., Tsai, J.-F.: Global optimization of mixed-integer nonlinear programming for engineering design problems. In: Proceedings of the International Conference on System Science and Engineering, pp. 255–259 (2011)Google Scholar
  28. 28.
    Zahara, E., Hu, C.-H.: Solving constrained optimization problems with hybrid particle swarm optimization. Eng. Optim. 40, 1031–1049 (2008)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Algoritmi R&D CentreUniversity of MinhoBragaPortugal

Personalised recommendations