Advertisement

Maintenance of Human and Machine Metadata over the Web Content

  • Karol Rástočný
  • Mária Bieliková
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7703)

Abstract

Semantics over the Web content is crucial for web information systems, e.g. for effective information exploration, navigation or search. However, current coverage of the Web by semantics is insufficient. Web information systems mostly create their own content based metadata (e.g., identified keywords) and user collaboration metadata (e.g., implicit user feedbacks) in a form of information tags – structured information with semantic relations to the tagged content. By information tags web information systems build a lightweight semantics over the Web content, in which they can store knowledge and information about the content and interconnections between information artifacts of the content. Crucial problem of information tags lies in dynamicity of the Web whose content is continually modified. This together with influence of time can lead to invalidation of information tags which are closely related to tagged content. We address this issue via maintenance approach based on automatically and semi-automatically generated rules that respect changes on the Web and time aspect. The maintenance utilizes a rule-based engine which watches changes in the tagged content, identifies dependencies among maintenance rules and builds optimal strategy of rules application. We evaluate proposed maintenance approach in two domains – programing repositories and digital libraries, which use shared information tags repository.

Keywords

metadata information tag maintenance lightweight semantics 

References

  1. 1.
    Berners-Lee, T., Cailliau, R., Luotonen, A., Nielsen, H.F., Secret, A.: The World-Wide Web. Communications of the ACM 37, 76–82 (1994)CrossRefGoogle Scholar
  2. 2.
    Handschuh, S., Heath, T., Thai, V.: Visual interfaces to the social and the semantic web (VISSW 2009). In: 13th Int. Conf. on Intelligent UIs, pp. 499–500. ACM Press, NY (2009)Google Scholar
  3. 3.
    Shadbolt, N., Berners-Lee, T., Hall, W.: The Semantic Web Revisited. IEEE Intelligent Systems 21, 96–101 (2006)Google Scholar
  4. 4.
    Ramachandran, V.A., Krishnamurthi, I.: NLION: Natural Language Interface for Querying ONtologies. In: 2nd Bangalore Annual Compute Conf., p. 4. ACM Press, NY (2009)Google Scholar
  5. 5.
    Elbassuoni, S., Blanco, R.: Keyword Search over RDF Graphs. In: 20th ACM Int. Conf. on Information and Knowledge Management, pp. 237–242. ACM Press, NY (2011)Google Scholar
  6. 6.
    Uren, V., Cimiano, P., Iria, J., Handschuh, S., Vargasvera, M., Motta, E., Ciravegna, F.: Semantic Annotation for Knowledge Management: Requirements and a Survey of the State of the Art. Web Sem.: Science, Services and Agents on the WWW 4, 14–28 (2006)Google Scholar
  7. 7.
    Hazman, M., El-Beltagy, S.R., Rafea, A.: A Survey of Ontology Learning Approaches. International Journal of Computer Applications 22, 36–43 (2011)CrossRefGoogle Scholar
  8. 8.
    Reeve, L., Han, H.: Survey of Semantic Annotation Platforms. In: ACM Symposium on Applied Computing, pp. 1634–1638. ACM, NY (2005)Google Scholar
  9. 9.
    Sabou, M., Gracia, J.L., Angeletou, S., d’Aquin, M., Motta, E.: Evaluating the Semantic Web: A Task-Based Approach. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ISWC/ASWC 2007. LNCS, vol. 4825, pp. 423–437. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Giunchiglia, F., Zaihrayeu, I.: Lightweight Ontologies. Tech. report, Univ. of Trento, p. 10 (2007) Google Scholar
  11. 11.
    Šimko, M.: Automated Acquisition of Domain Model for Adaptive Collaborative Web-Based Learning. Inf. Sciences and Tech., Bulletin of the ACM Slovakia 2(4), 9 p. (2012)Google Scholar
  12. 12.
    Bieliková, M., Barla, M., Šimko, M.: Lightweight Semantics for the “Wild Web”. In: IADIS Int. Conf. WWW/Internet 2011 (keynote), pp. xxv–xxxii. IADIS Press (2011)Google Scholar
  13. 13.
    Gerber, A., Hyland, A., Hunter, J.: A Collaborative Scholarly Annotation System for Dynamic Web Documents – A Literary Case Study. In: Chowdhury, G., Koo, C., Hunter, J. (eds.) ICADL 2010. LNCS, vol. 6102, pp. 29–39. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Sanderson, R., Van de Sompel, H.: Making Web Annotations Persistent over Time. In: 10th Annual Joint Conf. on Digital Libraries, pp. 1–10. ACM Press, NY (2010)Google Scholar
  15. 15.
    Yu, C.-H., Groza, T., Hunter, J.: High Speed Capture, Retrieval and Rendering of Segment-Based Annotations on 3D Museum Objects. In: Xing, C., Crestani, F., Rauber, A. (eds.) ICADL 2011. LNCS, vol. 7008, pp. 5–15. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Bieliková, M., Rástočný, K.: Lightweight Semantics over Web Information Systems Content Employing Knowledge Tags. In: Castano, S., Vassiliadis, P., Lakshmanan, L.V.S., Lee, M.L. (eds.) ER Workshops 2012. LNCS, vol. 7518, pp. 327–336. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Karol Rástočný
    • 1
  • Mária Bieliková
    • 1
  1. 1.Institute of Informatics and Software Engineering, Faculty of Informatics and Information TechnologiesSlovak University of TechnologyBratislavaSlovakia

Personalised recommendations