Skip to main content

Efficient Public Key Generation for Homomorphic Encryption over the Integers

  • Conference paper
Book cover Advances in Communication, Network, and Computing (CNC 2012)

Abstract

The ‘Holy Grail’ of cryptography called Fully Homomorphic Encryption (FHE), which allows encrypted data processing and delegation of computational tasks to the remote untrusted server, has become a hot research topic in light of the privacy concerns related to cloud computing. Several FHE schemes were found after the first construction of such scheme by Craig Gentry in 2009. One of the several reasons making these theoretically feasible schemes unpractical is their high computational costs. In this paper, a simplest possible key generation method is proposed for the somewhat homomorphic scheme of Van Dijk et al., which leads to an efficient integer based FHE scheme. Also, the security and practicality of the proposed scheme is thoroughly analyzed with respect to the new key generation method suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rivest, R., Adleman, L., Dertouzos, M.: On data banks and privacy homomorphisms. In: Foundations of Secure Computation, pp. 169–180 (1978)

    Google Scholar 

  2. Gentry, C.: A Fully homomorphic encryption scheme. Ph.D. thesis, Stanford Univ. (2009)

    Google Scholar 

  3. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC 2009, pp. 169–178. ACM (2009)

    Google Scholar 

  4. Smart, N.P., Vercauteren, F.: Fully Homomorphic Encryption with Relatively Small Key and Ciphertext Sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 420–443. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully Homomorphic Encryption over the Integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Gentry, C.: Computing arbitrary functions of encrypted data. Communications of the ACM 53(3), 97–105 (2010)

    Article  MATH  Google Scholar 

  7. GovindaRamaiah, Y., VijayaKumari, G.: State-of-the-art and Critique of Cloud Computing. In: NCNGCIS 2011, pp. 50–60. IMS, Noida (2011)

    Google Scholar 

  8. Coron, J.-S., Mandal, A., Naccache, D., Tibouchi, M.: Fully Homomorphic Encryption over the Integers with Shorter Public Keys. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 487–504. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: Fully Homomorphic Encryption without Bootstrapping. Electronic Colloquium on Computational Complexity (ECCC) 18, 111 (2011)

    MATH  Google Scholar 

  10. Vaikuntanathan, V.: Computing Blindfolded: New Developments in Fully Homomorphic Encryption, http://www.cs.toronto.edu/~vinodv/FHE-focs-survey.pdf

  11. Howgrave-Graham, N.: Approximate Integer Common Divisors. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 51–66. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  12. Chen, Y., Nguyen, P.Q.: Faster algorithms for approximate common divisors: Breaking fully homomorphic encryption challenges over the integers. Cryptology ePrint Archive, Report 2011/436, http://eprint.iacr.org/2011/436

  13. Briggs, M.: An Introduction to the General Number Field Sieve. Master’s Thesis, Virginia Tech (April 1998), http://scholar.lib.vt.edu/theses/available/etd-32298-93111/

  14. Lenstra, H.: Factoring Integers with Elliptic Curves. Annals of Mathematics 126, 649–673 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Ramaiah, Y.G., Kumari, G.V. (2012). Efficient Public Key Generation for Homomorphic Encryption over the Integers. In: Das, V.V., Stephen, J. (eds) Advances in Communication, Network, and Computing. CNC 2012. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 108. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35615-5_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35615-5_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35614-8

  • Online ISBN: 978-3-642-35615-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics