Algorithms Based on Finite Automata for Testing of Z-codes

  • Dang Quyet Thang
  • Nguyen Dinh Han
  • Phan Trung Huy
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7513)


In this paper, we propose an algorithm to decide whether a regular language recognized by finite automata is a Z-code or not. This algorithm has time complexity O(n 4) for the general case of non-deterministic automata, O(n 2) for the restricted case of deterministic automata, where n is the number of states of finite automata.


deterministic automata bipolar quadratic algorithm Z-code 


  1. 1.
    Berstel, J., Perrin, D.: Theory of Codes. Academic Press Inc., New York (1985)MATHGoogle Scholar
  2. 2.
    Devolder, J., Latteux, M., Litovsky, I., Staiger, L.: Codes and infinite words. Acta Cybernetica 11(4), 241–256 (1994)MathSciNetMATHGoogle Scholar
  3. 3.
    Staiger, L.: On infinitary finite length codes. Informatique Théorique et Applications 20(4), 483–494 (1986)MathSciNetMATHGoogle Scholar
  4. 4.
    Van, D.L.: Contribution to Combinatorics on Words. PhD thesis, Humboldt University, Berlin (1985)Google Scholar
  5. 5.
    Mohri, M., Pereira, F., Riley, M.: Speech recognition with weighted finite-state transducers. Springer, Heidelberg (2007) Google Scholar
  6. 6.
    Devolder, J., Timmerman, E.: Finitary codes for biinfinite words. Informatique Théorique et Applications 26(4), 363–386 (1992)MathSciNetMATHGoogle Scholar
  7. 7.
    Van, D.L., Lam, N.H., Huy, P.T.: On codes concerning bi-infinite words. Acta Cybernetica 11(1-2), 97–109 (1993)MathSciNetMATHGoogle Scholar
  8. 8.
    Lam, N.H., Van, D.L.: On a class of infinitary codes. Theoretical Infomatics and Applications 24, 441–458 (1990)MATHGoogle Scholar
  9. 9.
    Madonia, M., Salemi, S., Sportelli, T.: A generalization of Sardinas-Patterson algorithm to Z-codes. Theoretical Computer Science 108, 251–270 (1993)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press and McGraw-Hill (2009)Google Scholar
  11. 11.
    Van, D.L., Thomas, D.G., Subramanian, K.G., Siromoney, R.: Bi-Infinitary Codes. RAIRO Inform. Theor. Appl. 24(1), 67–87 (1990)MathSciNetMATHGoogle Scholar
  12. 12.
    Restivo, A.: Codes and Automata. In: Pin, J.E. (ed.) LITP 1988. LNCS, vol. 386, Springer, Heidelberg (1989)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • Dang Quyet Thang
    • 1
  • Nguyen Dinh Han
    • 2
  • Phan Trung Huy
    • 3
  1. 1.Nam Dinh University of Technology and EducationVietnam
  2. 2.Hung Yen University of Technology and EducationVietnam
  3. 3.Hanoi University of Science and TechnologyVietnam

Personalised recommendations