Skip to main content

Use of Wetland Plants in Bioaccumulation of Heavy Metals

  • Chapter
  • First Online:
Plant-Based Remediation Processes

Part of the book series: Soil Biology ((SOILBIOL,volume 35))

Abstract

Heavy metal pollution due to anthropogenic activities like mining, smelting, untreated waste disposal and dumping, and pesticides and fertilizers application is becoming a major global concern. Once released into the environment, heavy metals find their way into aquatic systems contaminating water bodies and its associated life forms. Wetlands are most vulnerable in this process as they are usually low lands in comparison to the surroundings. Conventional methods of mitigating metal contamination in soils and water like extraction, immobilization, and toxicity reduction, physical barrier, chemical stabilization, electro kinetic processes, soil washing, and pump-and-treat systems are prohibitively expensive, energy intensive, and can reduce the fertility and bioactivity of soils. Natural wetland systems along with its native flora have the capacity to improve water quality by filtering pollutants from water that flows through on its way to receiving water bodies. Many of the wetland plants have the capability to mobilize and uptake the metals at rhizosphere, where microbial association and symbiosis play an important role in the accumulation of metals. This chapter tried to encompass the role of wetland plants and their selection related to natural restoration of contaminated sites through economic, aesthetically pleasing phytoremediation technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akerblom S, Baath E, Bringmark L, Bringmark E (2007) Experimentally induced effects of heavy metal on microbial activity and community structure of forest mor layers. Biol Fertil Soils 44:79–91

    Google Scholar 

  • Baath E (1989) Effects of heavy metals in soil on microbial processes and populations. Water Air Soil Pollut 47:335–379

    CAS  Google Scholar 

  • Baath E, Diaz-Ravina M, Bakken LR (2005) Microbial biomass, community structure and metal tolerance of a naturally Pb-enriched forest soil. Microb Ecol 50:496–505

    PubMed  CAS  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements – a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Bamborough L, Cummings SP (2009) The impact of increasing heavy metal stress on the diversity and structure of the bacterial and actinobacterial communities of metallophytic grassland soil. Biol Fertil Soils 45:273–280

    CAS  Google Scholar 

  • Barker WW, Banfield JF (1998) Zones of chemical and physical interaction at interfaces between microbial communities and minerals: a model. Geomicrobiol J 15:223–244

    CAS  Google Scholar 

  • Barron MG (2003) Bioaccumulation and bioconcentration in aquatic organisms. In: Hoffman DJ, Rattner BA, Burton GA Jr, Cairns J Jr (eds) Handbook of ecotoxicology, 2nd edn. Lewis, Boca Raton, FL

    Google Scholar 

  • Becerra-Castro C, Monterroso C, García-Lestón M, Prieto-Fernández A, Acea MJ, Kidd PS (2009) Rhizosphere microbial densities and trace metal tolerance of the nickel hyperaccumulator Alyssum serpyllifolium subsp. lusitanicum. Int J Phytoremediation 11:525–541

    PubMed  CAS  Google Scholar 

  • Bentley R, Chasteen TG (2002) Microbial methylation of metalloids: arsenic, antimony and bismuth. Microbiol Mol Biol Rev 66:250–271

    PubMed  CAS  Google Scholar 

  • Bertrand M, Poirier I (2005) Photosynthetic organisms and excess of metals. Photosynthetica 43: 345–353

    CAS  Google Scholar 

  • Brim H, McFarlan SC, Fredrickson JK, Minton KW, Zhai M, Wackett LP, Daly MJ (2000) Engineering Deinococcus radiodurans for metal remediation in radioactive mixed waste environments. Nat Biotechnol 18:85–90

    PubMed  CAS  Google Scholar 

  • Brooks RR, Chambers MF, Nicks LJ, Robinson BH (1998) Phytomining. Trends Plant Sci 3: 359–362

    Google Scholar 

  • Bruins MR, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment. Ecotoxicol Environ Saf 45:198–207

    PubMed  CAS  Google Scholar 

  • Bryan GW, Langston WJ (1992) Bioavailability, accumulation and effects of heavy metals in sediments with special reference to United Kingdom estuaries: a review. Environ Pollut 76:89–131

    PubMed  CAS  Google Scholar 

  • Burken J, Vroblesky D, Balouet JC (2011) Phytoforensics, dendrochemistry, and phytoscreening: new green tools for delineating contaminants from past and present. Environ Sci Technol 45: 6218–6226

    PubMed  CAS  Google Scholar 

  • Calvaruso C, Turpault MP, Frey-Klett P (2006) Root-associated bacteria contribute to mineral weathering and to mineral nutrition in trees: a budgeting analysis. Appl Environ Microbiol 72:1258–1266

    PubMed  CAS  Google Scholar 

  • Carbonell-Barrachina MA, Aarabi MA, DeLaune RD, Gambrell RP, Patrick WH Jr (1998) The influence of arsenic chemical form and concentration on Spartina patens and Spartina lterniflora growth and tissue arsenic concentration. Plant Soil 198:33–43

    CAS  Google Scholar 

  • CERCLA (2007) Priority list of hazardous substances. http://www.atsdr.cdc.gov/spl/supportdocs/appendix-d.pdf. Accessed 30 Aug 2012

  • Chander K, Brookes PC (1993) Residual effects of zinc, copper and nickel in sewage sludge on microbial biomass in a sandy loam. Soil Biol Biochem 25:1231–1239

    CAS  Google Scholar 

  • Chander K, Dyckmans J, Hoeper H, Joergensen RG, Raubuch M (2001) Long term effects on soil microbial properties of heavy metals from industrial exhaust deposition. J Plant Nutr Soil Sci 164:657–663

    CAS  Google Scholar 

  • Chatterjee S, Chattopadhyay B, Mukhopadhyay SK (2007) Sequestration and localization of metals in two common wetland plants of contaminated east Calcutta wetlands: a Ramsar Site in India. Land Contam Reclam 15:437–452

    Google Scholar 

  • Chatterjee S, Chattopadhyay B, Mukhopadhyay SK (2010) Monitoring waste metal pollution at Ganga estuary via the east Calcutta wetland areas. Environ Monit Assess 170:23–31

    PubMed  Google Scholar 

  • Chatterjee S, Chetia M, Singh L, Chattopadhyay B, Datta S, Mukhopadhyay SK (2011) A study on the phytoaccumulation of waste elements in wetland plants of a Ramsar site in India. Environ Monit Assess 178:361–371

    PubMed  CAS  Google Scholar 

  • Chatterjee S, Singh L, Chattopadhyay B, Datta S, Mukhopadhyay SK (2012) A study on the waste metal remediation using floriculture at east Calcutta wetlands, a Ramsar site in India. Environ Monit Assess 184:5139–5150

    PubMed  CAS  Google Scholar 

  • Chetia M, Chatterjee S, Banerjee S, Nath MJ, Singh L, Srivastava RB, Sarma HP (2011) Groundwater arsenic contamination in Brahmaputra river basin: a water quality assessment in Golaghat (Assam), India. Environ Monit Assess 173:371–385

    PubMed  CAS  Google Scholar 

  • Choi D, Kim HM, Yun HK, Park JA, Kim WT, Bok SH (1996) Molecular cloning of a metallothionein-like gene from Nicotiana glutinosa L. and its induction by wounding and tobacco mosaic virus infection. Plant Physiol 112:353–359

    PubMed  CAS  Google Scholar 

  • Cho MC, Kang D-O, Yoon BD, Lee K (2000) Toluene degradation pathway from Pseudomonas putida F1: substrate specificity and gene induction by 1-substituted benzenes. J Ind Microbiol Biotechnol 25:163–170

    CAS  Google Scholar 

  • Clemens S, Kim EJ, Neumann D, Schroeder JI (1999) Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. EMBO J 18:3325–3333

    PubMed  CAS  Google Scholar 

  • Cloutier-Hurteau B, Sauve S, Courchesne F (2008) Influence of microorganisms on Cu speciation in the rhizosphere of forest soils. Soil Biol Biochem 40:2441–2451

    CAS  Google Scholar 

  • Cobbett CS (2000) Phytochelatins and their role in heavy metal detoxification. Plant Physiol 123: 825–833

    PubMed  CAS  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    PubMed  CAS  Google Scholar 

  • Cozzarelli IM, Bekins BA, Eganhouse RP, Warren E, Essaid HI (2010) In situ measurements of volatile aromatic hydrocarbon biodegradation rates in groundwater. J Contam Hydrol 111: 48–64

    PubMed  CAS  Google Scholar 

  • Curtis CR, Duke JA (1982) An assessment of land biomass and energy potential for the republic of panama, vol 3. Institute of Energy Conversion, University of Delaware, Newark, DE

    Google Scholar 

  • de Groot R, Stuip M, Finlayson M, and Davidson N (2006) Valuing wetlands: guidance for valuing the benefits derived from wetland ecosystem services. Ramsar Technical Report No. 3, CBD Technical Series No. 27. Ramsar Convention Secretariat, Gland, Switzerland. http://www.ramsar.org/pdf/lib/lib_rtr03.pdf. Accessed 30 Aug 2012

  • De Lacerda LD, Carvalho C, Tanizaki K, Ovalle A, Rezende C (1993) The biogeochemistry and trace metals distribution of mangrove rhizospheres. Biotropica 25:252–257

    Google Scholar 

  • de Souza MP, Chu D, Zhao M, Zayed AM, Ruzin SE, Schichnes D, Terry N (1999) Rhizosphere bacteria enhance selenium accumulation and volatilization by Indian mustard. Plant Physiol 119(2):565–574

    PubMed  Google Scholar 

  • Delorme TA, Gagliardi JV, Angle JS, Chaney RL (2001) Influence of the zinc hyperaccumulator Thlaspi caerulescens J. and C. Presl. and the non-metal accumulator Trifolium pratense L. on soil microbial populations. Can J Microbiol 47:773–776

    PubMed  CAS  Google Scholar 

  • Dhankher OP, Li Y, Rosen BP, Shi J, Salt D, Senecoff JF, Sashti NA, Meagher RB (2002) Engineered tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and γ-glutamylcysteine synthetase expression. Nat Biotechnol 20:1140–1145

    PubMed  CAS  Google Scholar 

  • Doucleff M, Terry N (2002) Pumping out the arsenic. Nat Biotechnol 20:1094–1095

    PubMed  CAS  Google Scholar 

  • Doyle MO, Otte ML (1997) Organism-induced accumulation of iron, zinc and arsenic in wetland soils. Environ Pollut 96:1–11

    PubMed  CAS  Google Scholar 

  • Duruibe JO, Ogwuegbu MOC, Egwurugwu JN (2007) Heavy metal pollution and human biotoxic effects. Int J Phys Sci 2:112–118

    Google Scholar 

  • Earthworks and mining watch Canada, February (2012) TROUBLED WATERS- HOW mine waste dumping is poisoning our oceans, rivers, and lakes. http://www.earthworksaction.org/files/publications/Troubled-Waters_FINAL.pdf. Accessed 30 Aug 2012

  • Espinoza-Quinones FR, Módenes AN, Costa IL Jr, Palácio SM, Szymanski N, Trigueros DEG, Kroumov AD, Silva EA (2009) Kinetics of lead bioaccumulation from a hydroponic medium by aquatic macrophytes Pistia stratiotes. Water Air Soil Pollut 203:29–37

    CAS  Google Scholar 

  • Farwell AJ, Vesely S, Nero V, Rodriguez H, Shah S, Dixon DG, Glick BR (2006) The use of transgenic canola (B. napus) and plant growth-promoting bacteria to enhance plant biomass at a nickel-contaminated field site. Plant Soil 288:309–318

    CAS  Google Scholar 

  • Gahoonia TS, Care D, Nielsen NE (1997) Root hairs and phosphorus acquisition of wheat and barley cultivars. Plant Soil 191:181–188

    CAS  Google Scholar 

  • Gamalero E, Martinotti MG, Trotta A, Lemanceau P, Berta G (2002) Morphogenetic modifications induced by Pseudomonas fluorescens A6RI and Glomus mosseae BEG12 in the root system of tomato differ according to plant growth conditions. New Phytol 155: 293–300

    Google Scholar 

  • Gambrell R (1994) Trace and toxic metals in wetlands—a review. J Environ Qual 23:883–891

    CAS  Google Scholar 

  • Garbisu C, Hernandez-Allica J, Barrutia O, Alkorta I, Becerril JM (2002) Phytoremediation: a technology using green plants to remove contaminants from polluted areas. Rev Environ Health 17:173–188

    PubMed  CAS  Google Scholar 

  • Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of its by-products. Appl Ecol Environ Res 3:1–18

    Google Scholar 

  • Gillam EMJ (2008) Engineering cytochrome P450 enzymes. Chem Res Toxicol 21:220–231

    PubMed  Google Scholar 

  • Giller KE, Witter E, McGrath SP (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biol Biochem 30:1389–1414

    CAS  Google Scholar 

  • Gleba D, Borisjuk NV, Borisjuk LG, Kneer R, Poulev A, Skarzhinskaya M, Dushenkov S, Logendra S, Gleba YY, Raskin I (1999) Use of plant roots for phytoremediation and molecular farming. Proc Natl Acad Sci USA 96:5973–5977

    PubMed  CAS  Google Scholar 

  • Glick BR (2004) Teamwork in phytoremediation. Nat Biotechnol 22:526–527

    PubMed  CAS  Google Scholar 

  • Herawati N, Susuki S, Hayashi K, Rivai IF, Koyama H (2000) Cadmium, copper and zinc levels in rice and soil of Japan, Indonesia and China by soil type. Bull Environ Contam Toxicol 64:33–39

    PubMed  CAS  Google Scholar 

  • Hutton M, Symon C (1986) The quantities of cadmium, lead, mercury and arsenic entering the U.K. environment from human activities. Sci Total Environ 57:129–150

    PubMed  CAS  Google Scholar 

  • INSA, A Position Paper (2011) Hazardous metals and minerals pollution in India. http://insaindia.org/pdf/Hazardous_Metals.pdf. Accessed 30 Aug 2012

  • Jung MC (2008) Heavy metal concentrations in soils and factors affecting metal uptake by plants in the vicinity of a Korean Cu-W Mine. Sensors 8:2413–2423

    Google Scholar 

  • Kadlec RH, Knight RI (1996) Treatment wetlands. CRC, Boca Raton, FL

    Google Scholar 

  • Kalay M, Canli M (2000) Elimination of essential (Cu, Zn) and non-essential (Cd, Pb) metals from tissues of a freshwater fish Tilapia zilli. Turk J Zool 24:429–436

    CAS  Google Scholar 

  • Kavamura VN, Esposito E (2010) Biotechnological strategies applied to the decontamination of soils polluted with heavy metals. Biotechnol Adv 28:61–69

    PubMed  CAS  Google Scholar 

  • Ke HY, Sun JG, Feng XZ, Czako M, Marton L (2001) Differential mercury volatilization by tobacco organs expressing a modified bacterial merA gene. Cell Res 11:231–236

    Google Scholar 

  • Khan AG, Kuek C, Chaudhry TM, Koo CS, Hayes W (2000) Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 41:197–207

    PubMed  CAS  Google Scholar 

  • Kidd P, Barceló J, Bernal MP, Navari-Izzo F, Poschenrieder C, Shilev S, Clemente R, Monterroso C (2009) Trace element behaviour at the root–soil interface: implications in phytoremediation. Environ Exp Bot 67:243–259

    CAS  Google Scholar 

  • Korda A, Santas P, Tenente A, Santas R (1997) Petroleum hydrocarbon bioremediation: sampling and analytical techniques, in situ treatments and commercial microorganisms currently used. Appl Microbiol Biotechnol 48:677–689

    PubMed  CAS  Google Scholar 

  • Kuffner M, Puschenreiter M, Wieshammer G, Gorfer M, Sessitsch A (2008) Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows. Plant Soil 304:35–44

    CAS  Google Scholar 

  • Lakatos G, Kiss M, Mezzaros I (1999) Heavy metal content of common reed (Phragmites australis/Cav./Trin. ex Steudel) and its periphyton in Hungarian shallow standing waters. Hydrobiologia 415:47–53

    CAS  Google Scholar 

  • Landmeyer JE (2011) Introduction to phytoremediation of contaminated groundwater. Springer, Germany

    Google Scholar 

  • Landmeyer JE, Bradley PM, Trego DA, Hale KG, Haas JE (2010) MTBE, TBA, and TAME attenuation in diverse hyporheic zones. Ground Water 48:30–41

    PubMed  CAS  Google Scholar 

  • Lasat MM (2000) Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction and assessment of pertinent agronomic issues. J Hazard Subst Res 2:5

    Google Scholar 

  • Lodewyckx C, Mergeay M, Vangronsveld J, Clijsters H, van der Lelie D (2002) Isolation, characterization, and identification of bacteria associated with the zinc hyperaccumulator Thlaspi caerulescens subsp. calaminaria. Int J Phytoremediation 4:101–115

    PubMed  CAS  Google Scholar 

  • Lombi E, Zhao FJ, Dunham SJ, McGrath SP (2000) Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense. New Phytol 145:11–20

    CAS  Google Scholar 

  • Lovley DR (2003) Cleaning up with genomics: applying molecular biology to bioremediation. Nat Rev Microbiol 1:35–44

    PubMed  CAS  Google Scholar 

  • Lu D, Li G, Valladares GS, Batistella M (2004) Mapping soil erosion risk in Rondonia, Brazilian Amazonia: using rusle, remote sensing and GIS. Land Degrad Dev 15:499–512

    Google Scholar 

  • McGrath SP, Zhao FJ (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol 14:277–282

    PubMed  CAS  Google Scholar 

  • McLean JE, Bledsoe BE (1992) Behavior of metals in soils (EPA Ground Water Issue) EPA/540/S-92/018

    Google Scholar 

  • Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 3:153–162

    PubMed  CAS  Google Scholar 

  • Meharg AA, Cairney JW (2000) Co-evolution of mycorrhizal symbionts and their hosts to metal-contaminated environments. Adv Ecol Res 30:69–112

    CAS  Google Scholar 

  • Mendelssohn IA, Postek MT (1982) Elemental analysis of deposits on the roots of Spartina alterniflora Loisel. Am J Bot 69:904–912

    Google Scholar 

  • Mengoni A, Barzanti R, Gonnelli C, Gabbrielli R, Bazzicalupo M (2001) Characterization of nickel-resistant bacteria isolated from serpentine soil. Environ Microbiol 3:691–698

    PubMed  CAS  Google Scholar 

  • Mengoni A, Grassi E, Barzanti R, Biondi EG, Gonnelli C, Kim CK, Bazzicalupo M (2004) Genetic diversity of bacterial communities of serpentine soil and of rhizosphere of the nickel-hyperaccumulator plant Alyssum bertolonii. Microb Ecol 48:209–217

    PubMed  CAS  Google Scholar 

  • Michel C, Jean M, Coulon S, Dictor MC, Delorme F, Morin D, Garrido F (2007) Biofilms of As(III)-oxidising bacteria: formation and activity studies for bioremediation process development. Appl Microbiol Biotechnol 77:457–467

    PubMed  CAS  Google Scholar 

  • Millennium Ecosystem Assessment (2005) Ecosystem and human wellbeing: wetlands and water synthesis. World Resources Institute, Washington, DC. http://www.unwater.org/downloads/MA_wetlandsandWater_English.pdf. Accessed 15 Aug 2012

  • Mitsch WJ, Gosselink JG (2000) Wetlands. Wiley, New York

    Google Scholar 

  • Moorhead KK, Reddy KR (1988) Oxygen transport through selected aquatic macrophytes. J Environ Qual 17:138–142

    Google Scholar 

  • Morant M, Bak S, Moller BL, Werck-Reichhart D (2003) Plant cytochromes P450: tools for pharmacology, plant protection and phytoremediation. Curr Opin Biotechnol 14:151–162

    PubMed  CAS  Google Scholar 

  • Morris CA, Nicolaus B, Sampson V, Harwood JL, Kille P (1999) Identification and characterization of a recombinant metallothionein protein from a marine alga, Fucus vesiculosus. Biochem J 338:553–560

    PubMed  CAS  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Remediation technologies for metal contaminated soils and groundwater: an evaluation. Eng Geol 60:193–207

    Google Scholar 

  • Nath K, Saini S, Sharma YK (2005) Chromium in tannery industry effluent and its effect on plant metabolism and growth. J Environ Biol 26:197–204

    PubMed  CAS  Google Scholar 

  • Nicks LJ, Chambers MF (1998) A pioneering study of the potential of phytomining for nickel. In: Brooks RR (ed) Plants that hyperaccumulate heavy metals. CAB International, Walingford, pp 313–326

    Google Scholar 

  • Nies DH (1995) The cobalt, zinc, and cadmium efflux system CzcABC from Alcaligenes eutrophus functions as a cation-proton antiporter in Escherichia coli. J Bacteriol 177:2707–2712

    PubMed  CAS  Google Scholar 

  • Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750

    PubMed  CAS  Google Scholar 

  • Noctor G, Arisi A, Jouanin L, Kunert K, Rennenberg H, Foyer C (1998) Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. J Exp Bot 49: 623–647

    CAS  Google Scholar 

  • Nriagu JO (1989) A global assessment of natural sources of atmospheric trace metals. Nature 338:47–49

    CAS  Google Scholar 

  • Nriagu JO, Pacyna J (1988) Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333:134–139

    PubMed  CAS  Google Scholar 

  • Odum WE (1988) Comparative ecology of tidal freshwater and salt marshes. Annu Rev Ecol Syst 19:147–176

    Google Scholar 

  • Pal A, Dutta S, Mukherjee PK, Paul AK (2004) Isolation and characterization of nickel-resistant microflora from serpentine soils of Andaman. World J Microbiol Biotechnol 20:881–886

    CAS  Google Scholar 

  • Pardue JH, Patrick WH Jr (1995) Changes in metal speciation following alteration of sediment redox status. In: Allen HE (ed) Metal-contaminated aquatic sediments. Science, Ann Arbor, MI

    Google Scholar 

  • Patten CL, Glick BR (1996) Bacterial biosynthesis on indole-3-acetic acid. Can J Microbiol 42: 207–220

    PubMed  CAS  Google Scholar 

  • Peuke AD, Rennenberg H (2005) Phytoremediation: molecular biology, requirements for application, environmental protection, public attention and feasibility. EMBO Rep 6:497–501

    PubMed  CAS  Google Scholar 

  • Prasad MNV (2004) Heavy metal stress in plants: from biomolecules to ecosystems. Narosa, New Delhi

    Google Scholar 

  • Prasad MVN (2006) Sunflower (Helianthus annuus L.) - a potential crop for environmental industry. In: 1st International symposium on sunflower industrial uses. Faculty of Agriculture, Udine, Italy

    Google Scholar 

  • Prasad MVN (2007) Aquatic plants for phytotechnology. In: Singh SN, Tripathi RD (eds) Environmental bioremediation technologies. Springer, Germany

    Google Scholar 

  • Prasad MNV, Freitas HMO (2003) Metal hyperaccumulation in plants-biodiversity prospecting for phytoremediation technology. Electron J Biotechol 6(3):doi: 10.2225/vol6-issue3-fulltext-6

    Google Scholar 

  • Prasad MNV, Greger M, Smith BN (2001) Aquatic macrophytes. In: Prasad MNV (ed) Metals in the environment: analysis by biodiversity. Marcel Dekker, New York

    Google Scholar 

  • Raab A, Schat H, Meharg AA, Feldmann J (2005) Uptake, translocation and transformation of arsenate and arsenite in sunflower (Helianthus annuus): formation of arsenic-phytochelatin complexes during exposure to high arsenic concentrations. New Phytol 168(3):551–558

    PubMed  CAS  Google Scholar 

  • Ravit B, Ehrenfeld JG, Haggblom MM (2003) A comparison of sediment microbial communities associated with Phragmites australis and Spartina alterniflora in two brackish wetlands of New Jersey. Estuaries 26:465–474

    Google Scholar 

  • Reddy CN, Patrick WH (1977) Effect of redox potential and pH on the uptake of cadmium and lead by rice plants. J Environ Qual 6:259–262

    CAS  Google Scholar 

  • Reed SC (1991) Nationwide inventory: constructed wetlands for wastewater treatment. Biocycle 32:44–49

    Google Scholar 

  • Roane TM, Kellogg ST (1996) Characterization of bacterial communities in heavy metal contaminated soils. Can J Microbiol 42:593–603

    PubMed  CAS  Google Scholar 

  • Robles-González IV, Fava F, Poggi-Varaldo HM (2008) A review on slurry bioreactors for bioremediation of soils and sediments. Microb Cell Fact 7:5

    PubMed  Google Scholar 

  • Salido AL, Hasty KL, Lim JM, Butcher DJ (2003) Phytoremediation of arsenic and lead in contaminated soil using Chinese Brake ferns (Pteris vittata) and Indian mustard (Brassica juncea). Int J Phytoremediation 5:89–103

    PubMed  CAS  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49: 643–668

    PubMed  CAS  Google Scholar 

  • Schaller J, Brackhage C, Mkandawire M, Dudel EG (2011) Metal/metalloid accumulation/remobilization during aquatic litter decomposition in freshwater: a review. Sci Tot Environ 409:4891–4898

    CAS  Google Scholar 

  • Schlegel C, von Neumann CP, Neumeyer F, Richter A, Strauch S, de Boer J, Dasso CH, Peterson RJ (1994) Depopulation of 180Tam by Coulomb excitation and possible astrophysical consequences. Phys Rev C Nucl Phys 50:2198–2204

    PubMed  CAS  Google Scholar 

  • Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31:739–753

    PubMed  CAS  Google Scholar 

  • Sheng X, Xia JJ (2006) Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria. Chemosphere 64:1036–1042

    PubMed  CAS  Google Scholar 

  • Sheorana V, Sheoranb AS, Pooniaa P (2009) Phytomining: a review. Min Eng 22:1007–1019

    Google Scholar 

  • Stout LM, Dodova EN, Tyson JF, Nüsslein K (2010) Phytoprotective influence of bacteria on growth and cadmium accumulation in the aquatic plant lemna minor. Water Res 44(17):4970–4979

    PubMed  CAS  Google Scholar 

  • Sundby B, Vale C, Cacador I, Catarino F, Madureira MJ, Caetano M (1998) Metal-rich concretions on the roots of salt marsh plants: mechanisms and rate of formation. Limnol Oceanogr 43:245–252

    CAS  Google Scholar 

  • Tamaki S, Frankenberger WT Jr (1992) Environmental biochemistry of arsenic. Rev Environ Contam Toxicol 124:79–110

    PubMed  CAS  Google Scholar 

  • Tangahu BV, Abdullah SRS, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng. doi:10.1155/2011/939161

  • Tessier A, Campbell P, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51:844–850

    CAS  Google Scholar 

  • USEPA (1995) United States Environmental Protection Agency: America’s Wetlands: our vital link between land and water. EPA 843-K-95-001. http://www.epa.gov. Accessed 21 Aug 2012

  • USEPA (2000) United States Environmental Protection Agency: introduction to phytoremediation, EPA 600-R-99-107. (http://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=30003T7G.txt; downloaded on 26-1-13)

  • USEPA (2001) United States Environmental Protection Agency: functions and values of wetlands. EPA 843-F-01-002c. http://www.epa.gov/owow/wetlands/pdf/fun_val.pdf. Accessed 21 Aug 2012

  • USEPA (2004) United States Environmental Protection Agency: constructed treatment wetlands. EPA 843-F-03-013. http://water.epa.gov/type/wetlands/restore/upload/2004_09_20_wetlands_pdf_ConstructedW_pr.pdf. Accessed 21 Aug 2012

  • USEPA (2009a) United States Environmental Protection Agency: municipal solid waste in the United States. http://www.epa.gov/osw/nonhaz/municipal/pubs/msw2009rpt.pdf. Accessed 21 Aug 2012

  • USEPA (2009b) United States Environmental Protection Agency: EPA programs that address runoff. http://www.epa.gov/owow/wetlands/facts/fact25.html. Accessed 21 Aug 2012

  • Using phytoremediation to clean up sites. http://www.epa.gov/superfund/accomp/news/phyto.htm. Accessed 21 Aug 2012

  • Vale C, Catarino F, Cortesao C, Cacador M (1990) Presence of metal-rich rhizoconcretions on the roots of Spartina maritima from the salt marshes of the Tagus estuary, Portugal. Sci Tot Environ 97(98):617–626

    Google Scholar 

  • Verkleij JA, Schat H (1990) Mechanisms of metal tolerance in higher plants. In: Shaw AJ (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC, Boca Raton, FL

    Google Scholar 

  • Vesk PA, Nockolds CE, Allaway WG (1999) Metal localization in water hyacinth roots from an urban wetland. Plant Cell Environ 22:149–158

    Google Scholar 

  • Watanabe ME (1997) Phytoremediation on the brink of commercialization. Environ Sci Technol 31:182–186

    Google Scholar 

  • Weis JS, Weis P (2004) Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environ Int 30:685–700

    PubMed  CAS  Google Scholar 

  • Wheeler CT, Hughes LT, Oldroyd J, Pulford ID (2001) Effects of nickel on Frankia and its symbiosis with Alnus glutinosa (L.). Gaertn. Plant Soil 23:81–90

    Google Scholar 

  • Whiting SN, Leake JR, McGrath SP, Baker AJM (2001) Zinc accumulation by Thlaspi caerulescens from soils with different Zn availability: a pot study. Plant Soil 236:11–18

    CAS  Google Scholar 

  • Williams JB (2002) Phytoremediation in wetland ecosystems: progress, problems and potential. Crit Rev Plant Sci 21:607–635

    CAS  Google Scholar 

  • Wright DJ, Otte ML (1999) Wetland plant effects on the biogeochemistry of metals beyond the rhizosphere. Biol Environ Proc Roy Irish Acad 99B:3–10

    Google Scholar 

  • Wu SC, Cheung KC, Luo YM, Wong MH (2006) Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea. Environ Pollut 140:124–135

    PubMed  CAS  Google Scholar 

  • Ye Z, Baker AJ, Wong MH, Willis AJ (1998) Zinc, lead and cadmium accumulation and tolerance in Typha latifolia as affected by iron plaque on the root surface. Aquat Bot 61:55–67

    CAS  Google Scholar 

  • Zantopoulos N, Antoniou V, Nikolaidis E (1999) Copper, zinc, cadmium, and lead in sheep grazing in North Greece. Bull Environ Contam Toxicol 62:691–699

    PubMed  CAS  Google Scholar 

  • Zheng J, Hintelmann H, Dimock D, Dzurko MS (2003) Speciation of arsenic in water, sediment, and plants of the Moira watershed, Canada, using HPLC coupled to high resolution ICP-MS. Anal Bioanal Chem 377:14–24

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Authors wish to convey thanks and appreciation to Mrs. Swagata Chatterjee for the illustration (both Figs. 7.1 and 7.2) in the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumya Chatterjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chatterjee, S., Datta, S., Mallick, P.H., Mitra, A., Veer, V., Mukhopadhyay, S.K. (2013). Use of Wetland Plants in Bioaccumulation of Heavy Metals. In: Gupta, D. (eds) Plant-Based Remediation Processes. Soil Biology, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35564-6_7

Download citation

Publish with us

Policies and ethics