Skip to main content

Metal Remediation via In Vitro Root Cultures

  • Chapter
  • First Online:
Plant-Based Remediation Processes

Part of the book series: Soil Biology ((SOILBIOL,volume 35))

Abstract

The in vitro root culture and hairy roots culture represent a relative new approach for metal removal studies. Both systems are characterized by indefinite growth and genetic and biochemical stability. Higher growth rates are obtained, and the analysis of metal removal can be performed under controlled conditions and without the participation of microbiota using these in vitro systems. This chapter reviews some examples of in vitro root cultures obtained from plants, such as Rubia tinctorum, Scirpus americanus, and Typha latifolia, that grow in contaminated sites, and their capacity to remove heavy metals from culture medium. The importance of genetically transformed roots with Agrobacterium tumefaciens in phytoremediation studies is presented. The capabilities of hairy roots to remove and accumulate Cd, Cu, Ni, U, and Zn and the mechanism of tolerance in response to these metals are included, too. Finally, brief information related to scale-up for the production of hairy roots using bioreactors and the perspective of this technology is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alves da Silva G, Trufem SFB, Saggin Junior OJ, Costa Maia L (2005) Arbuscular mycorrhizal fungi in a semiarid copper mining area in Brazil. Mycorrhiza 15:47–53

    Google Scholar 

  • Audet P, Charest C (2009) Contribution of arbuscular mycorrhizal symbiosis to in vitro root metal uptake: from trace to toxic metal conditions. Botany 87:913–921

    CAS  Google Scholar 

  • Bertin C, Yang X, Weston L (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256:67–83

    CAS  Google Scholar 

  • Blakesley D, Weston GD, Hall JF (1991) The role of endogenous auxin in root initiation. Plant Growth Regul 10:341–353

    CAS  Google Scholar 

  • Boominathan R, Doran PM (2002) Ni-induced oxidative stress in roots of the Ni hyperaccumulator Alyssum bertolonii. New Phytol 156:205–215

    CAS  Google Scholar 

  • Boominathan R, Doran PM (2003a) Organic acid complexation, heavy metal distribution and the effect of ATPase inhibition in hairy roots of hyperaccumulator plant species. J Biotechnol 101:131–146

    PubMed  CAS  Google Scholar 

  • Boominathan R, Doran PM (2003b) Cadmium tolerance and antioxidative defenses in hairy roots of the cadmium hyperaccumulator Thlaspi caerulescens. Biotechnol Bioeng 83:158–167

    PubMed  CAS  Google Scholar 

  • Bourgaud F, Gravot A, Milesi S, Gontier E (2001) Production of plant secondary metabolites: a historical perspective. Plant Sci 161:839–851

    CAS  Google Scholar 

  • Buchanan BB, Gruissem W, Jones RL (2000) Biochemistry and molecular biology of plants. American Society of Plant Physiologist, Rockville, MD

    Google Scholar 

  • Capuana M (2011) Heavy metals and woody plants-biotechnologies for phytoremediation. iForest 4:7–15

    Google Scholar 

  • Carroll D (1970) Rock weathering. Plenum, London

    Google Scholar 

  • Chandra S (2011) Natural plant genetic engineer Agrobacterium rhizogenes: role of T-DNA in plant secondary metabolism. Biotechnol Lett 34:407–415

    PubMed  Google Scholar 

  • Choi YE, Kim YS, Paek KY (2006) Types and designs of bioreactors for hairy root culture. In: Gupta SD, Ibaraki Y (eds) Plant tissue culture engineering. Springer, Dordrecht

    Google Scholar 

  • Christey MC (2001) Use of Ri-mediated transformation for production of transgenic plants. In Vitro Cell Dev Biol Plant 37:687–700

    CAS  Google Scholar 

  • Czuba M (1987) Methyl mercury toxicity in plant cultures: modification of resistance and demethylation by light and/or 2, 4-dichlorophenoxy acetic acid. Ecotoxicol Environ Saf 13:191–201

    PubMed  CAS  Google Scholar 

  • Dessaux Y, Petit A, Tempe J (1992) Opines in Agrobacterium biology. In: Verma DPS (ed) Molecular signals in plant-microbe communications. CRC, Boca Raton, FL

    Google Scholar 

  • Di Lonardo S, Capuana M, Arnetoli M, Gabbrielli R, Gonnelli C (2011) Exploring the metal phytoremediation potential of three Populus alba L. clones using an in vitro screening. Environ Sci Pollut Res 18:82–90

    CAS  Google Scholar 

  • Doran PM (2009) Application of plant tissue cultures in phytoremediation research: incentives and limitations. Biotechnol Bioeng 103:60–75

    PubMed  CAS  Google Scholar 

  • Eapen S, Suseelan KN, Tivarekar S, Kotwal SA, Mitra R (2003) Potential for rhizofiltration of uranium using hairy roots cultures of Brassica juncea and Chenopodium amaranticolor. Environ Res 91:127–133

    PubMed  CAS  Google Scholar 

  • Estruch JJ, Parets-Soler A, Schmülling T, Spena A (1991) Cytosolic localization in transgenic plants of the rolC peptide from Agrobacterium rhizogenes. Plant Mol Biol 17:547–550

    PubMed  CAS  Google Scholar 

  • Fernandes JC, Henriques FS (1991) Biochemical, physiological, and structural effects of excess copper in plants. Bot Rev 57:246–273

    Google Scholar 

  • Filippini F, Lo Schiavo F, Terzi M, Costantino P, Trovato M (1994) The plant oncogene rolB alters binding of auxin to plant cell membranes. Plant Cell Physiol 35:767–771

    CAS  Google Scholar 

  • Flocco CG, Alvarez MA, Giulietti AM (1998) Peroxidase production in vitro by A. lapathifolia (horseradish)-transformed root cultures: effect of elicitation on level and profile of isoenzymes. Biotechnol Appl Biochem 28: 33–38

    PubMed  CAS  Google Scholar 

  • Flocco CG, Giulietti AM (2007) In vitro hairy root cultures as a tool for phytoremediation research. In: Willey N (ed) Phytoremediation methods in biotechnology, vol 23. Wiley Humana, Totowa, NJ

    Google Scholar 

  • Gamborg OL, Millar RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    PubMed  CAS  Google Scholar 

  • George EF, Hall MA, De Klerk GJ (2008) Plant propagation by tissue culture, 3rd edn. Springer, Berlin

    Google Scholar 

  • Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of its byproducts. Appl Ecol Environ Res 3:1–18

    Google Scholar 

  • Gillaspy G (2008) Plant development and physiology. In: Stewart CN (ed) Plant biotechnology and genetics: principles, techniques and applications. Wiley, Totowa, NJ

    Google Scholar 

  • Giri A, Narasu L (2000) Transgenic hairy roots: recent trends and applications. Biotechnol Adv 18:1–22

    PubMed  CAS  Google Scholar 

  • Golan-Goldhirsh A, Barazani O, Nepovim A, Soudek P, Smrcek S, Dufkova L, Krenkova S, Yrjala K, Schröders P, Vanek T (2004) Plant response to heavy metals and organic pollutants in cell culture and at whole plant level. J Soils Sediments 4:133–140

    CAS  Google Scholar 

  • Herzig R, Guadagnini M, Rehnert A, Erismann KH (2003) Phytoextraction efficiency of in vitro-bred tobacco variants using a non-GMO approach. In: Vanek T, Schwitzguebel JP (eds) Phytoremediation inventory – COST Action 837 view. UOCHB AVČR, Prague

    Google Scholar 

  • Hinkley TK, Lamothe PJ, Xiao J, Meeker GP, Thornber CR (2006) Volcanoes - the ultimate source of trace metal enrichment of atmospheric dust (abstract #V53A–1738). American Geophysical Union, Fall Meeting, 2006

    Google Scholar 

  • Hopkins W, Hüner NP (2009) Introduction to plant physiology, 4th edn. Wiley, New York

    Google Scholar 

  • Hou W, Chen X, Song G, Wang Q, Chang C (2007) Effects of copper and cadmium on heavy metal polluted water body restoration by duckweed (Lemna minor). Plant Physiol Biochem 45:62–69

    PubMed  CAS  Google Scholar 

  • Hu ZR, Du M (2006) Hairy root and its application in plant genetic engineering. J Integr Plant Biol 48:12–127

    Google Scholar 

  • Huang JW, Cunningham SD (1996) Lead phytoextraction: species variation in lead uptake and translocation. New Phytol 145:75–84

    Google Scholar 

  • Jain CK (2004) Metal fractionation study on bed sediments of river Yamuna, India. Water Res 38:569–578

    PubMed  CAS  Google Scholar 

  • Jan VV, Demacedo CC, Kinet JM, Bouharmont J (1997) Selection of Al-resistant plants from a sensitive rice cultivar using somaclonal variation, in vitro and hydroponic cultures. Euphytica 97:303–310

    Google Scholar 

  • Jayakumare K, Jaleel Ch A, Vijayarengan P (2009) Effect of different concentrations of cobalt on pigment contents of soybean. Bot Res Int 2:153–156

    Google Scholar 

  • Kartosentono S, Nuraida A, Indrayanto G, Noor CZ (2001) Phytoremediation of Sr2+ and its influence on the growth, Ca2+ and solasodine content of shoot culture of Solanum laciniatum. Biotechnol Lett 23:153–155

    CAS  Google Scholar 

  • Kawamura M, Shigeoka T, Akita M, Kobayashi Y (1996) Newly developed apparatus for inoculating plant organs into large-scale fermentor. J Ferment Bioeng 82:618–619

    CAS  Google Scholar 

  • Khalafalla MM, Daffalla HM, El-Shemy HA, Abdellatef E (2009) Establishment of in vitro fast-growing normal root culture of Vernonia amygdalina – A potent African medicinal plant. Afr J Biotechnol 8:5952–5957

    CAS  Google Scholar 

  • Khan AG, Kuek C, Chaudhary TM, Khaoo CS, Hayes WJ (2000) Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 41:197–207

    PubMed  CAS  Google Scholar 

  • Kim J, Wyskiyzuk BE, Weathers PJ (2002) Secondary metabolism of hairy root cultures in bioreactors. In Vitro Cell Dev Biol Plant 38:1–10

    CAS  Google Scholar 

  • Kusakari K, Yokoyama M, Inomata S (2000) Enhanced production of saikosaponins by root culture of Bupleurum falcatum L. using two-step control of sugar concentration. Plant Cell Rep 19:1115–1120

    CAS  Google Scholar 

  • Lasat MM (2002) Phytoextraction of toxic metals: a review of biological mechanisms. J Environ Qual 31:109–120

    PubMed  CAS  Google Scholar 

  • Lee M, Phillips RL (1988) The chromosomal basis of somaclonal variation. Annu Rev Plant Physiol Plant Mol Biol 39:413–437

    Google Scholar 

  • Lynch JM (1982) Limits to microbial growth in soil. J Gen Microbiol 128:405–410

    Google Scholar 

  • Macek T, Kotrba P, Suchova M, Skacel F, Demmerova K, Rumi T (1994) Accumulation of cadmium by hairy root cultures of Solanum niger. Biotechnol Lett 16:621–624

    CAS  Google Scholar 

  • Maitani T, Kubota H, Sato K, Yamada T (1996) The composition of metals bound to class III metallothionein (phytochelatin and its desglycyl peptide) induced by various metals in root cultures of Rubia tinctorum. Plant Physiol 110:1145–1150

    PubMed  CAS  Google Scholar 

  • Manios T, Stentiford E, Millner P (2003) The effect of heavy metals accumulation on the chlorophyll concentration of Typha latifolia plants, growing in a substrate containing sewage sludge compost and watered with metaliferus water. Ecol Eng 20:65–74

    Google Scholar 

  • Marmiroli N (2007) Genetic variability and genetic engineering in phytoremediation. In: Marmiroli N, Samotokin B, Marmiroli M (eds) Advanced science and technology for biological decontamination of sites affected by chemical and radiological nuclear agents. Springer, New York

    Google Scholar 

  • Mason CF (1991) Biology of fresh water pollution. Longman, London

    Google Scholar 

  • McLaughlin MJ, Singh BR (1999) Cadmium in soils and plants. Kluwers Academic, Dordrecht

    Google Scholar 

  • Memon AR, Schröder P (2009) Implications of metal accumulation mechanisms to phytoremediation. Environ Sci Pollut Res Int 16:162–175

    PubMed  CAS  Google Scholar 

  • Metzger L, Fouchault I, Glad C, Prost R, Tepfer D (1992) Estimation of cadmium availability using transformed roots. Plant Soil 143:249–257

    CAS  Google Scholar 

  • Meyer A, Tempe J, Costantino P (2000) Hairy root: a molecular overview functional analysis of Agrobacterium rhizogenes T-DNA genes. In: Stacey G, Keen N (eds) Plant-microbe interactions, vol 5. APS Press, St. Paul, MN

    Google Scholar 

  • Murashige T, Skoog FA (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Nandagopal S, Ranjitha Kumari BD (2007) Effectiveness of auxin induced in vitro root culture in chicory. J Cent Eur Agric 8:73–80

    Google Scholar 

  • Nedelkoska T, Doran PM (2000a) Hyperaccumulation of cadmium by hairy roots of Thlaspi caerulescens. Biotechnol Bioeng 67:607–615

    PubMed  CAS  Google Scholar 

  • Nedelkoska T, Doran PM (2000b) Characteristics of heavy metal uptake by plant species with potential for phytoremediation and phytomining. Miner Eng 13:549–561

    CAS  Google Scholar 

  • Nedelkoska T, Doran PM (2001) Hyperaccumulation of nickel by hairy roots of Alyssum species: comparison with whole regenerated plants. Biotechnol Prog 17:752–759

    PubMed  CAS  Google Scholar 

  • Nedelkoska T, Doran PM (2003a) Cadmium tolerance and antioxidative defenses in hairy roots of the cadmium hyperaccumulator Thlaspi caerulescens. Biotechnol Bioeng 83:158–167

    Google Scholar 

  • Nehnevajova E, Herzig R, Erismann KH, Schwitzguébel JP (2007) In vitro breeding of Brassica juncea L. to enhance metal accumulation and extraction properties. Plant Cell Rep 26:429–437

    PubMed  CAS  Google Scholar 

  • Nilsson O, Moritz T, Imbault N, Sandberg G, Olsson O (1993) Hormonal characterization of transgenic tobacco plants expressing the rolC gene of Agrobacterium rhizogenes TL-DNA. Plant Physiol 102:363–371

    PubMed  CAS  Google Scholar 

  • Padmavathiamma PK, Li LY (2007) Phytoremediation technology: hyper-accumulation metals in plants. Water Air Soil Pollut 184:105–126

    CAS  Google Scholar 

  • Pandolfini T, Gabbrielli R, Comparini C (1992) Nickel toxicity and peroxidase activity in seedlings of Triticum aestivum L. Plant Cell Environ 15:719–925

    CAS  Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    PubMed  CAS  Google Scholar 

  • Pilon-Smits E, Pilon M (2002) Phytoremediation of metals using transgenic plants. Crit Rev Plant Sci 21:439–456

    CAS  Google Scholar 

  • Pistelok F, Galas W (1999) Zinc pollution of the Przemsza river and its tributaries. Pol J Environ Stud 8:47–53

    CAS  Google Scholar 

  • Pollard AJ, Baker AJM (1996) Quantitative genetics of hyperaccumulation in Thlaspi caerulescens. New Phytol 132:113–118

    CAS  Google Scholar 

  • Ramakrishnan D, Salim J, Curtis WR (1994) Inoculation and tissue distribution in pilot-scale plant root culture bioreactors. Biotechnol Tech 8:639–644

    Google Scholar 

  • Ramgareeb S, Watt MP, Marsh C, Cooke JA (1999) Assessment of Al3+ availability in callus culture media for screening tolerant genotypes of Cynodon dactylon. Plant Cell Tiss Org Cult 56:65–68

    CAS  Google Scholar 

  • Ribera D, Labrot F, Tisnerat G, Narbonne JF (1996) Uranium in the environment: occurrence, transfer, and biological effects. Rev Environ Contam Toxicol 146:53–89

    PubMed  CAS  Google Scholar 

  • Rivetta A, Negrini N, Cocucci M (1997) Involvement of Ca2+-calmodulin in Cd2+ toxicity during the early phases of radish (Raphanus sativus L.) seed germination. Plant Cell Environ 20:600–608

    CAS  Google Scholar 

  • Robinson BH, Chiarucci A, Brooks RR, Petit D, Kirkman JH, Gregg PEH, De Dominicis V (1997) The nickel hyperaccumulator plant Alyssum beroloniii as a potential agent for phytoremediation and phytomining of nickel. J Geochem Explor 59:75–86

    CAS  Google Scholar 

  • Ros A, Morales A, Segura J, Picazo I (1992) In vivo and in vitro effects of nickel and cadmium on the plasmalemma ATPase from rice (Oryza sativa L.) shoots and roots. Plant Sci 83:1–6

    CAS  Google Scholar 

  • Rout GR, Samantary S, Das P (1999) In vitro selection and biochemical characterization of zinc and manganese adapted callus in Brassica spp. Plant Sci 146:89–100

    CAS  Google Scholar 

  • Santos-Díaz MS, Barrón-Cruz MC (2011) Lead, chromium and manganese removal by in vitro root cultures of two aquatic macrophytes species: Typha latifolia L. and Scirpus americanus Pers. Int J Phytoremediation 13:538–551

    Google Scholar 

  • Santos-Díaz MS, Barrón-Cruz MC, Alfaro-de la Torre MC (2007) Induction of in vitro roots cultures of Typha latifolia and Scirpus americanus and study of their capacity to remove heavy metals. Electron J Biotechnol 10:417–424

    Google Scholar 

  • Schutzendübel A, Polle A (2002) Plant response to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    PubMed  Google Scholar 

  • Shanks JV, Morgan J (1999) Plant “hairy root” culture. Curr Opin Biotechnol 10:151–155

    PubMed  CAS  Google Scholar 

  • Singh OV, Labana S, Pandey G, Budhiraja R, Jain RK (2003) Phytoremediation: an overview of metallic ion decontamination from soil. Appl Microbiol Biotechnol 61:405–412

    PubMed  CAS  Google Scholar 

  • Sivakumar G, Yu K, Lee J, Kang J, Lee L, Kim W, Paek K (2006) Tissue cultured mountain ginseng adventitious roots. Eng Life Sci 6:372–383

    CAS  Google Scholar 

  • Soudek P, Petrová S, Benešová D, Vanĕk T (2011) Uranium uptake and stress respose of in vitro cultivated hairy root culture of Amoracia rusticana. Agrochimica 60:15–28

    Google Scholar 

  • Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18:321–336

    PubMed  CAS  Google Scholar 

  • Straczek A, Wannijn J, Van Hees M, Thijs H, Tiry Y (2009) Tolerance of hairy roots of carrots to U chronic exposure in standardized in vitro device. Environ Exp Bot 65:82–89

    CAS  Google Scholar 

  • Subroto MA, Priambodo S, Indrasti NS (2007) Accumulation of zinc by hairy root cultures of Solanum nigrum. Biotechnology 6:344–348

    CAS  Google Scholar 

  • Sudha CG, Seeni S (2001) Establishment and analysis of fast-growing normal root culture of Decalepis arayalpathra, a rare endemic medicinal plant. Curr Sci 81:371–374

    CAS  Google Scholar 

  • Suresh B, Ravishankar GA (2004) Phytoremediation – a novel and promising approach for environmental clean-up. Crit Rev Biotechnol 24:97–124

    PubMed  CAS  Google Scholar 

  • Suza W, Harris RS, Lorence A (2008) Hairy roots: from high-value metabolite production to phytoremediation. Electron J Integr Biosci 3:57–65

    Google Scholar 

  • Suzuki M, Kobayashi K, Nagata N, Matsuda O, Iba K, Yoshida S, Muranaka T (2008) Novel root cultures system using a recessive mutant with a rooty phenotype. Plant Biotech 25:197–200

    CAS  Google Scholar 

  • Talano MA, Agostini E, Medina MI, Milrad de Forchetti S, Tigier HA (2003) Tomato (Lycopersicon esculentum cv. Pera) hairy root cultures: characterization and changes in peroxidase activity under NaCl treatment. In Vitro Cell Dev Biol Plant 39:354–359

    CAS  Google Scholar 

  • Telke AA, Kagalkar AN, Jagtap UB, Desai NS, Bapat VA, Govindwar SP (2011) Biochemical characterization of laccase from hairy root culture of Brassica juncea L. and role of redox mediators to enhance its potential for the decolorization of textile dyes. Planta 234:1137–1149

    PubMed  CAS  Google Scholar 

  • Tepfer D (1990) Genetic transformation using Agrobacterium rhizogenes. Physiol Planta 79:140–146

    CAS  Google Scholar 

  • Uren NC (2000) Types, amounts and possible functions of compounds released into the rhizosphere by soil-grown plants. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere, biochemistry and organic substances at the soil–plant interface. Marcel Dekker, New York

    Google Scholar 

  • Valim Reis R, Patrão AP, Borges L, Perez T, Chierrito C, Rodrigues Souto E, Mera Souza L, Iacomini M, Arildo Oliveira AJ, Correia Gonçalves RA (2011) Establishment of adventitious root culture of Stevia rebaudiana Bertoni in a roller bottle system. Plant Cell Tiss Org Cult 106:329–335

    Google Scholar 

  • Vandenhove H, Van Hees M, Wannun J, Wouters K, Wang L (2007) Can we predict uranium bioavailability based on soil parameters? part 2: soil solution uranium concentration is not a good bioavailabilty index. Environ Pollut 145:577–586

    PubMed  CAS  Google Scholar 

  • Veena V, Taylor CG (2007) Agrobacterium rhizogenes: recent developments and promising applications. In Vitro Cell Dev Biol Plant 43:383–403

    CAS  Google Scholar 

  • Wei S, Zhou Q (2008) Trace elements in agro-ecosystems. In: Prasad MNV (ed) Trace elements as contaminants and nutrients–consequences in ecosystems and human health. Wiley, Totowa, NJ

    Google Scholar 

  • White PR (1934) Potentially unlimited growth of excised tomato root tips in a liquid medium. Plant Physiol 9:585–600

    PubMed  CAS  Google Scholar 

  • Wu S, Zu Y, Wu M (2001) Cadmium response of the hairy root culture of the endangered species Adenophora lobophylla. Plant Sci 160:551–562

    PubMed  CAS  Google Scholar 

  • Wu G, Kang HB, Zhang XY, Shao HB, Chu LY, Ruan CJ (2010) A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco-environmental concerns and opportunities. J Hazard Mater 174:1–8

    PubMed  CAS  Google Scholar 

  • Zhang Y, Shi H, Po E, Tsang K (2009) Influences of heavy metal cadmium alone and in combination with zinc on the growth and activities of antioxidant enzymes of Cucumis sativus hairy roots. Chin J Biotechnol 25(1):60–68

    Google Scholar 

  • Zhou ML, Tang YX, Wu YM (2012) Plant hairy roots from remediation of aqueous pollutants. Plant Mol Biol Rep. doi:10.1007/s11105-012-0465-z

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María del Socorro Santos-Díaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

del Socorro Santos-Díaz, M. (2013). Metal Remediation via In Vitro Root Cultures. In: Gupta, D. (eds) Plant-Based Remediation Processes. Soil Biology, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35564-6_6

Download citation

Publish with us

Policies and ethics