Remediation Mechanisms of Tropical Plants for Lead-Contaminated Environment

  • Olabisi Peter AbioyeEmail author
  • Udeme Joshua Josiah Ijah
  • Sesan Abiodun Aransiola
Part of the Soil Biology book series (SOILBIOL, volume 35)


Heavy metals, especially lead, are major environmental pollutants that pose a serious threat to the environment and human and animal health. Series of approaches is being practised in order to reclaim land contaminated with lead. Phytoremediation offers the most environmental friendly approach for its remediation. This chapter reviews the mechanisms used by some tropical plants to remediate lead-contaminated soil.


Heavy Metal Lead Concentration United States Environmental Protection Agency Transfer Factor Brassica Juncea 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abioye OP, Agamuthu P, Abdul Aziz A (2012) Phytotreatment of soil contaminated with used lubricating oil using Hibiscus cannabinus. Biodegradation 23:277–286PubMedCrossRefGoogle Scholar
  2. Adriano DC (2003) Trace elements in terrestrial environments: biogeochemistry, bioavailability and risks of metals, 2nd edn. Springer, New York, NYGoogle Scholar
  3. Ahmad K, Ejaz A, Azam M, Khan ZI, Ashraf M, Al-Qurainy F, Fardous A, Gondal S, Bayat AR, Valeem EE (2011) Lead, cadmium and chromium contents of canola irrigated with sewage water. Pak J Bot 43(2):1403–1410Google Scholar
  4. Andra SS, Datta R, Sarkar D, Sarkar D, Saminathan SK, Mullens CP, Bach SB (2009) Analysis of phytochelatin complexes in the lead tolerant vetiver grass [Vetiveria zizanioides (L.)] using liquid chromatography and mass spectrometry. Environ Pollut 157(7):2173–2183PubMedCrossRefGoogle Scholar
  5. Arazi T, Sunkar R, Kaplan B, Fromm H (1999) A tobacco plasma membrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants. Plant J 20: 171–182PubMedCrossRefGoogle Scholar
  6. Arshad M, Silvestre J, Pinelli E, Kallerhoff J, Kaemmerer M, Tarigo A, Shahid M, Guiresse M, Pradere P, Dumat C (2008) A field study of lead phytoextraction by various scented Pelargonium cultivars. Chemosphere 71:2187–2192PubMedCrossRefGoogle Scholar
  7. ATSDR (2003) Agency for toxic substances and disease registry. Accessed 6 June, 2000
  8. Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126Google Scholar
  9. Bi X, Ren L, Gong M, He Y, Wang L, Ma Z (2010) Transfer of cadmium and lead from soil to mangoes in an uncontaminated area, Hainan Island, China. Geoderma 155:115–120CrossRefGoogle Scholar
  10. Blaylock MJ, Huang JW (1999) Phytoextraction of metals. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New YorkGoogle Scholar
  11. Blaylock MJ, Salt DE, Dushenkov S, Zakharova O, Gussman C, Kapulnik Y, Raskin I (1997) Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ Sci Technol 31:860–865CrossRefGoogle Scholar
  12. Bolan NS, Ko BG, Anderson CWN, Vogeler I (2008) Solute interactions in soils in relation to bioavailability and remediation of the environment. Fifth international symposium ISMOM 2008, Pucón, Chile, 24–28 NovGoogle Scholar
  13. Brennan MA, Shelly ML (1999) A model of the uptake, translocation and accumulation of lead by maize for the purpose of phytoextraction. Ecol Eng 12:271–297CrossRefGoogle Scholar
  14. Bressler JP, Olivi L, Cheong JH, Kim Y, Bannona D (2004) Divalent metal transporter 1 in lead and cadmium transport. Ann NY Acad Sci 1012:142–15PubMedCrossRefGoogle Scholar
  15. Brunet J, Varrault G, Zuily-Fodil Y, Repellin A (2009) Accumulation of lead in the roots of grass pea (Lathyrus sativus L.) plants triggers systemic variation in gene expression in the shoots. Chemosphere 77:1113–1120PubMedCrossRefGoogle Scholar
  16. Cao X, Ma LQ, Singh SP, Zhou Q (2008) Phosphate-induced lead immobilization from different lead minerals in soils under varying pH conditions. Environ Pollut 152:184–192PubMedCrossRefGoogle Scholar
  17. Cecchi M, Dumat C, Alric A, Felix-Faure B, Pradere P, Guiresse M (2008) Multi-metal contamination of a calcic cambisol by fallout from a lead-recycling plant. Geoderma 144:287–298CrossRefGoogle Scholar
  18. Cenkci S, Cigerci IH, Yildiz M, Özay C, Bozdag A, Terzi H (2010) Lead contamination reduces chlorophyll biosynthesis and genomic template stability in Brassica rapa L. Environ Exp Bot 67(3):467–473CrossRefGoogle Scholar
  19. Chaney RL, Reeves PG, Ryan JA, Simmons RW, Welch RM, Angle JS (2005) An improved understanding of soil Cd risk to humans and low cost methods to phytoextract Cd from contaminated soils to prevent soil Cd risks. Biometals 17:549–553CrossRefGoogle Scholar
  20. Clemens S (2006) Evolution and function of phytochelatin synthases. J Plant Physiol 163:319–332PubMedCrossRefGoogle Scholar
  21. Datta SP, Young SD (2005) Predicting metal uptake and risk to human food chain from leafy vegetables grown on soils amended by long-term application of sewage sludge. Water Air Soil Pollut 163:119–136CrossRefGoogle Scholar
  22. Deng H, Ye ZH, Wong MH (2004) Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China. Environ Pollut 132(1):29–40PubMedCrossRefGoogle Scholar
  23. Garland C, Wilkins D (1981) Effect of calcium on the uptake and toxicity of lead in Hordeum vulgare L. and Festuca ovina L. New Phytol 87(3):581–593CrossRefGoogle Scholar
  24. Ginn BR, Szymanowski JS, Fein JB (2008) Metal and proton binding onto the roots of Fescue rubra. Chem Geol 253:130–135CrossRefGoogle Scholar
  25. Gisbert C, Ros R, De Haro A, Walker DJ, Pilar Bernal M, Serrano R, Navarro-Aviñó J (2003) A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem Biophys Res Commun 303(2):440–445PubMedCrossRefGoogle Scholar
  26. Gomes E (2011) Genotoxicity and cytotoxicity of Cr (VI) and Pb2+ in Pisum sativu. PhD thesis, University of Aveiro, PortugalGoogle Scholar
  27. Ground-Water Remediation Technologies Analysis Center, GWRTAC (1997) Remediation of metals-contaminated soils and groundwater. Technology Evaluation Report, TE-97-01, GWRTAC-E Series, Pittsburgh, PA 15238.
  28. Grover P, Rekhadevi P, Danadevi K, Vuyyuri S, Mahboob M, Rahman M (2010) Genotoxicity evaluation in workers occupationally exposed to lead. Int J Hyg Environ Health 213:99–106PubMedCrossRefGoogle Scholar
  29. Gupta DK, Nicoloso FT, Schetinger M, Rossato LV, Pereira L, Castro GY, Srivastava S, Tripathi RD (2009) Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress. J Hazard Mater 172:479–484PubMedCrossRefGoogle Scholar
  30. Gupta DK, Huang HG, Yang XE, Razafindrabe BH, Inouhe M (2010) The detoxification of lead in Sedum alfredii H. is not related to phytochelatins but the glutathione. J Hazard Mater 177: 437–444PubMedCrossRefGoogle Scholar
  31. Hirsch RE, Lewis BD, Spalding EP, Sussman MR (1998) A role for the AKT1 potassium channel in plant nutrition. Science 280:918–921PubMedCrossRefGoogle Scholar
  32. Huang JW, Cunningham SD (1996) Lead phytoextraction: species variation in lead uptake and translocation. New Phytol 134:75–84CrossRefGoogle Scholar
  33. Huang JW, Chen JJ, Berti WR, Cunningham SD (1997) Phytoremediation of lead-contaminated soils: role of synthetic chelates in lead phytoextraction. Environ Sci Technol 31:800–880CrossRefGoogle Scholar
  34. Interstate Technology and Regulatory Cooperation (ITRC) Work Group (1997) Emerging technologies for the phytoremediation of metals in soils (viii). Accessed 19 July 2012
  35. Islam E, Liu D, Li T, Yang X, Jin X, Mahmood Q, Tian S, Li J (2008) Effect of Pb toxicity on leaf growth, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. J Hazard Mater 154:914–926PubMedCrossRefGoogle Scholar
  36. Jabeen R, Ahmad A (2012) Phytoremediation of heavy metals: physiological and molecular mechanisms. Bot Rev 75(4):339–364CrossRefGoogle Scholar
  37. Jiang W, Liu D (2010) Pb-induced cellular defense system in the root meristematic cells of Allium sativum L. BMC Plant Biol 10:40–40PubMedCrossRefGoogle Scholar
  38. Jung MC, Thornton I (1996) Heavy metal contamination of soils and plants in the vicinity of a lead-zinc mine korea. Appl Geochem 11:53–59CrossRefGoogle Scholar
  39. Kim YY, Yang YY, Lee Y (2002) Pb and Cd uptake in rice roots. Physiol Planta 116:368–372CrossRefGoogle Scholar
  40. Kim D, Bovet L, Kushnir S, Noh EW, Martinoia E, Lee Y (2006) AtATM3 is involved in heavy metal resistance in Arabidopsis. Plant Physiol 140:922–932PubMedCrossRefGoogle Scholar
  41. Kirpichtchikova TA, Manceau A, Spadini L, Panfili F, Marcus MA, Jacquet T (2006) Speciation and solubility of heavy metals in Geochimica et Cosmochimica contaminated soil using X-ray microfluorescence, EXAFS spectroscopy, chemical extraction, and thermodynamic modeling. Geochim Cosmochim Acta 70:2163–2190CrossRefGoogle Scholar
  42. Kohler C, Merkle T, Neuhaus G (1999) Characterization of a novel gene family of putative cyclic nucleotide and calmodulin-regulated ion channels in Arabidopsis thaliana. Plant J 18:97–104PubMedCrossRefGoogle Scholar
  43. Kopittke PM, Asher CJ, Kopittke RA, Menzies NW (2008) Prediction of Pb speciation in concentrated and dilute nutrient solutions. Environ Pollut 153:548–554PubMedCrossRefGoogle Scholar
  44. Krzesłowska M, Lenartowska M, Mellerowicz EJ, Samardakiewicz S, Wozny A (2009) Pectinous cell wall thickenings formation: a response of moss protonemata cells to lead. Environ Exp Bot 65:119–131CrossRefGoogle Scholar
  45. Krzesłowska M, Lenartowska M, Samardakiewicz S, Bilski H, Wozny A (2010) Lead deposited in the cell wall of Funaria hygrometrica protonemata is not stable: a remobilization can occur. Environ Pollut 158:325–338PubMedCrossRefGoogle Scholar
  46. Liu T, Liu S, Guan H, Ma L, Chen Z, Gu H (2009) Transcriptional profiling of Arabidopsis seedlings in response to heavy metal lead (Pb). Environ Exp Bot 67:377–386CrossRefGoogle Scholar
  47. Liu X, Peng K, Wang A, Lian C, Shen Z (2010) Cadmium accumulation and distribution in populations of Phytolacca americana L. and the role of transpiration. Chemosphere 78: 1136–1141PubMedCrossRefGoogle Scholar
  48. Ma LQ, Komar KM, Tu C (2001) A fern that accumulates arsenic. Nature 409:579PubMedCrossRefGoogle Scholar
  49. Maestri E, Marmiroli M, Visioli G, Marmiroli N (2010) Metal tolerance and hyperaccumulation: costs and trade-offs between traits and environment. Environ Exp Bot 68:1–13CrossRefGoogle Scholar
  50. Małecka A, Piechalak A, Morkunas I, Tomaszewska B (2008) Accumulation of lead in root cells of Pisum sativum. Acta Physiol Planta 30:629–637CrossRefGoogle Scholar
  51. Malone C, Koeppe DE, Miller RJ (1974) Localization of lead accumulated by corn plants. Plant Physiol 53:388–394PubMedCrossRefGoogle Scholar
  52. McGrath SP, Zhao E (2003) Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. Plant Soil 232:207–214CrossRefGoogle Scholar
  53. McLaughlin MJ, Zarcinas BA, Stevens DP, Cook N (2000) Soil testing for heavy metals. Commun Soil Sci Plant Anal 31(11–14):1661–1700CrossRefGoogle Scholar
  54. Meyers DER, Auchterlonie GJ, Webb RI, Wood B (2008) Uptake and localization of lead in the root system of Brassica juncea. Environ Pollut 153:323–332PubMedCrossRefGoogle Scholar
  55. Mishra S, Srivastava S, Tripathi RD, Kumar R, Seth C, Gupta DK (2006) Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere 65:1027–1039PubMedCrossRefGoogle Scholar
  56. Munzuroglu O, Geckil H (2002) Effects of metals on seed germination, root elongation, and coleoptile and hypocotyl growth in Triticum aestivum and Cucumis sativus. Arch Environ Contam Toxicol 43:203–213PubMedCrossRefGoogle Scholar
  57. Nanda-Kumar PBA, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238CrossRefGoogle Scholar
  58. Piechalak A, Tomaszewska B, Baralkiewicz D, Malecka A (2002) Accumulation and detoxification of lead ions in legumes. Phytochemistry 60(2):153–162PubMedCrossRefGoogle Scholar
  59. Piotrowska A, Bajguz A, Godlewska-Zylkiewicz B, Czerpak R, Kaminska M (2009) Jasmonic acid as modulator of lead toxicity in aquatic plant Wolffia arrhiza (Lemnaceae). Environ Exp Bot 66(3):507–513CrossRefGoogle Scholar
  60. Pourrut B, Perchet G, Silvestre J, Cecchi M, Guiresse M, Pinelli E (2008) Potential role of NADPH-oxidase in early steps of lead-induced oxidative burst in Vicia faba roots. J Plant Physiol 165:571–579PubMedCrossRefGoogle Scholar
  61. Prueb A (1997) Action values for mobile (NH4NO3) trace elements in soils based on the German National Standard DIN 19730. In: Prost R (ed) Contaminated soils. Proceedings of third international conference on the biogeochemistry of trace elements, INRA, Paris, FranceGoogle Scholar
  62. Punamiya P, Datta R, Sarkar D, Barber S, Patel M, Das P (2010) Symbiotic role of glomus mosseae in phytoextraction of lead in vetiver grass [Chrysopogon zizanioides (L.)]. J Hazard Mater 177(1–3):465–474PubMedCrossRefGoogle Scholar
  63. Raskin I, Ensley BD (2000) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New YorkGoogle Scholar
  64. Raskin I, Smith RD, Salt DE (1997) Phytoremediation of metals: using plants to remove pollutants from the environment. Curr Opin Biotech 8:221–226PubMedCrossRefGoogle Scholar
  65. Rattan RK, Datta SP, Singh AK, (1997) Effect of long term application of sewage effluents on United States Protection Agency (USEPA) (1992). Selection of control technologies for remediation of lead battery recycling sites, EPA/540/S-92/011 US. Accessed 19 Jul 2012Google Scholar
  66. Rehren TH (2007) A review of factors affecting the composition of early Egyptian glasses and faience: alkali and alkali earth oxides. J Archeol Sci 35:1345–1354CrossRefGoogle Scholar
  67. Reuther C (1998) Growing cleaner: phytoremediation goes commercial, but many questions remain. Accessed 19 July 2012
  68. Rosselli W, Keller C, Boschi K (2003) Phytoextraction capacity of tree growing on a metal contaminated soil. Plant Soil 256:265–272CrossRefGoogle Scholar
  69. Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Sci Total Environ 49:643–668Google Scholar
  70. Sammut M, Noack Y, Rose J, Hazemann J, Proux O, Depoux ZM, Fiani E (2010) Speciation of Cd and Pb in dust emitted from sinter plant. Chemosphere 78:445–450PubMedCrossRefGoogle Scholar
  71. Seregin IV, Ivanov VB (2001) Physiological aspects of cadmium and lead toxic effects on higher plants. Russ J Plant Physiol 48:523–544CrossRefGoogle Scholar
  72. Seregin IV, Shpigun LK, Ivanov VB (2004) Distribution and toxic effects of cadmium and lead on maize roots. Russ J Plant Physiol 51:525–533CrossRefGoogle Scholar
  73. Shahid M, Pinelli E, Pourrut B, Silvestre J, Dumat C (2011) Lead-induced genotoxicity to Vicia faba L. roots in relation with metal cell uptake and initial speciation. Ecotoxicol Environ Saf 74:78–84PubMedCrossRefGoogle Scholar
  74. Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17:35–52CrossRefGoogle Scholar
  75. Shu WS, Xia HP, Zhang ZQ, Lan CY, Wong MH (2002) Use of vetiver and three other grasses for revegetation of Pb/Zn mine tailings: field experiment. Int J Phytoremediation 4:47–57CrossRefGoogle Scholar
  76. Singh R, Tripathi RD, Dwivedi S, Kumar A, Trivedi PK, Chakrabarty D (2010) Lead bioaccumulation potential of an aquatic macrophyte Najas indica are related to antioxidant system. Bioresour Technol 101:3025–3032PubMedCrossRefGoogle Scholar
  77. Tung G, Temple PJ (1996) Uptake and localization of lead in corn (Zea mays L.) seedlings: a study by histochemical and electron microscopy. Sci Total Environ 188:71–85PubMedCrossRefGoogle Scholar
  78. United States Environmental Protection Agency (2000a) Electro kinetic and phytoremediation in situ treatment of metal-contaminated soil: state-of-the-practice. Office of Solid Waste and Emergency Response, Washington, DCGoogle Scholar
  79. United States Environmental Protection Agency (2000b) Lead and human health. Accessed 19 July 2012
  80. United States Environmental Protection Agency (2000c) Introduction to phytoremediation, EPA 600/R-99/107. US Environmental Protection Agency, Office of Research and Development, Cincinnati, OHGoogle Scholar
  81. Uzu G, Sobanska S, Aliouane Y, Pradere P, Dumat C (2009) Study of lead phytoavailability for atmospheric industrial micronic and sub-micronic particles in relation with lead speciation. Environ Pollut 157:1178–1185PubMedCrossRefGoogle Scholar
  82. Uzu G, Sobanska S, Sarret G, Munoz M, Dumat C (2010) Foliar lead uptake by lettuce exposed to atmospheric fallouts. Environ Sci Technol 44:1036–1042PubMedCrossRefGoogle Scholar
  83. Vadas TM, Ahner BA (2009) Cysteine- and glutathione-mediated uptake of lead and cadmium into Zea mays and Brassica napus roots. Environ Pollut 157:2558–2563PubMedCrossRefGoogle Scholar
  84. Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776PubMedCrossRefGoogle Scholar
  85. Wang H, Shan X, Wen B, Owens G, Fang J, Zhang S (2007) Effect of indole-3-acetic acid on lead accumulation in maize (Zea mays L.) seedlings and the relevant antioxidant response. Environ Exp Bot 61:246–253CrossRefGoogle Scholar
  86. Wojas S, Ruszczynska A, Bulska E, Wojciechowski M, Antosiewicz DM (2007) Ca2+-dependent plant response to Pb2+ is regulated by LCT1. Environ Pollut 147(3):584–592Google Scholar
  87. Wierzbicka M (1998) Lead in the apoplast of Allium cepa L. root tips–ultrastructural studies. Plant Sci 133:105–119CrossRefGoogle Scholar
  88. Wierzbicka MH, Przedpełska E, Ruzik R, Ouerdane L, Połe´c-Pawlak K, Jarosz M, Szpunar J, Szakiel A (2007) Comparison of the toxicity and distribution of cadmium and lead in plant cells. Protoplasma 231(1):99–111PubMedCrossRefGoogle Scholar
  89. Xiong ZT (1997) Bioaccumulation and physiological effects of excess lead in a roadside pioneer species Sonchus oleraceus L. Environ Pollut 97:275–279PubMedCrossRefGoogle Scholar
  90. Yadav S (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76(2):167–179CrossRefGoogle Scholar
  91. Yang XE, Long XX, Ni WZ, Fu CX (2005) Sedum alfredii H: a new Zn hyperaccumulating plant first found in China. Chin Sci Bull 47:1634–1637Google Scholar
  92. Zhou QX, Song YF (2004) Principal and methods of contaminate soil remediation. Science, Beijing, 75 ppGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Olabisi Peter Abioye
    • 1
    Email author
  • Udeme Joshua Josiah Ijah
    • 1
  • Sesan Abiodun Aransiola
    • 1
  1. 1.Department of MicrobiologyFederal University of TechnologyMinnaNigeria

Personalised recommendations