Skip to main content

Remediation Mechanisms of Tropical Plants for Lead-Contaminated Environment

  • Chapter
  • First Online:
Book cover Plant-Based Remediation Processes

Part of the book series: Soil Biology ((SOILBIOL,volume 35))

Abstract

Heavy metals, especially lead, are major environmental pollutants that pose a serious threat to the environment and human and animal health. Series of approaches is being practised in order to reclaim land contaminated with lead. Phytoremediation offers the most environmental friendly approach for its remediation. This chapter reviews the mechanisms used by some tropical plants to remediate lead-contaminated soil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abioye OP, Agamuthu P, Abdul Aziz A (2012) Phytotreatment of soil contaminated with used lubricating oil using Hibiscus cannabinus. Biodegradation 23:277–286

    Article  PubMed  CAS  Google Scholar 

  • Adriano DC (2003) Trace elements in terrestrial environments: biogeochemistry, bioavailability and risks of metals, 2nd edn. Springer, New York, NY

    Google Scholar 

  • Ahmad K, Ejaz A, Azam M, Khan ZI, Ashraf M, Al-Qurainy F, Fardous A, Gondal S, Bayat AR, Valeem EE (2011) Lead, cadmium and chromium contents of canola irrigated with sewage water. Pak J Bot 43(2):1403–1410

    CAS  Google Scholar 

  • Andra SS, Datta R, Sarkar D, Sarkar D, Saminathan SK, Mullens CP, Bach SB (2009) Analysis of phytochelatin complexes in the lead tolerant vetiver grass [Vetiveria zizanioides (L.)] using liquid chromatography and mass spectrometry. Environ Pollut 157(7):2173–2183

    Article  PubMed  CAS  Google Scholar 

  • Arazi T, Sunkar R, Kaplan B, Fromm H (1999) A tobacco plasma membrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants. Plant J 20: 171–182

    Article  PubMed  CAS  Google Scholar 

  • Arshad M, Silvestre J, Pinelli E, Kallerhoff J, Kaemmerer M, Tarigo A, Shahid M, Guiresse M, Pradere P, Dumat C (2008) A field study of lead phytoextraction by various scented Pelargonium cultivars. Chemosphere 71:2187–2192

    Article  PubMed  CAS  Google Scholar 

  • ATSDR (2003) Agency for toxic substances and disease registry. http://www.atsdr.cdc.gov/. Accessed 6 June, 2000

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Bi X, Ren L, Gong M, He Y, Wang L, Ma Z (2010) Transfer of cadmium and lead from soil to mangoes in an uncontaminated area, Hainan Island, China. Geoderma 155:115–120

    Article  CAS  Google Scholar 

  • Blaylock MJ, Huang JW (1999) Phytoextraction of metals. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York

    Google Scholar 

  • Blaylock MJ, Salt DE, Dushenkov S, Zakharova O, Gussman C, Kapulnik Y, Raskin I (1997) Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ Sci Technol 31:860–865

    Article  Google Scholar 

  • Bolan NS, Ko BG, Anderson CWN, Vogeler I (2008) Solute interactions in soils in relation to bioavailability and remediation of the environment. Fifth international symposium ISMOM 2008, Pucón, Chile, 24–28 Nov

    Google Scholar 

  • Brennan MA, Shelly ML (1999) A model of the uptake, translocation and accumulation of lead by maize for the purpose of phytoextraction. Ecol Eng 12:271–297

    Article  Google Scholar 

  • Bressler JP, Olivi L, Cheong JH, Kim Y, Bannona D (2004) Divalent metal transporter 1 in lead and cadmium transport. Ann NY Acad Sci 1012:142–15

    Article  PubMed  CAS  Google Scholar 

  • Brunet J, Varrault G, Zuily-Fodil Y, Repellin A (2009) Accumulation of lead in the roots of grass pea (Lathyrus sativus L.) plants triggers systemic variation in gene expression in the shoots. Chemosphere 77:1113–1120

    Article  PubMed  CAS  Google Scholar 

  • Cao X, Ma LQ, Singh SP, Zhou Q (2008) Phosphate-induced lead immobilization from different lead minerals in soils under varying pH conditions. Environ Pollut 152:184–192

    Article  PubMed  CAS  Google Scholar 

  • Cecchi M, Dumat C, Alric A, Felix-Faure B, Pradere P, Guiresse M (2008) Multi-metal contamination of a calcic cambisol by fallout from a lead-recycling plant. Geoderma 144:287–298

    Article  CAS  Google Scholar 

  • Cenkci S, Cigerci IH, Yildiz M, Özay C, Bozdag A, Terzi H (2010) Lead contamination reduces chlorophyll biosynthesis and genomic template stability in Brassica rapa L. Environ Exp Bot 67(3):467–473

    Article  CAS  Google Scholar 

  • Chaney RL, Reeves PG, Ryan JA, Simmons RW, Welch RM, Angle JS (2005) An improved understanding of soil Cd risk to humans and low cost methods to phytoextract Cd from contaminated soils to prevent soil Cd risks. Biometals 17:549–553

    Article  Google Scholar 

  • Clemens S (2006) Evolution and function of phytochelatin synthases. J Plant Physiol 163:319–332

    Article  PubMed  CAS  Google Scholar 

  • Datta SP, Young SD (2005) Predicting metal uptake and risk to human food chain from leafy vegetables grown on soils amended by long-term application of sewage sludge. Water Air Soil Pollut 163:119–136

    Article  CAS  Google Scholar 

  • Deng H, Ye ZH, Wong MH (2004) Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China. Environ Pollut 132(1):29–40

    Article  PubMed  CAS  Google Scholar 

  • Garland C, Wilkins D (1981) Effect of calcium on the uptake and toxicity of lead in Hordeum vulgare L. and Festuca ovina L. New Phytol 87(3):581–593

    Article  CAS  Google Scholar 

  • Ginn BR, Szymanowski JS, Fein JB (2008) Metal and proton binding onto the roots of Fescue rubra. Chem Geol 253:130–135

    Article  CAS  Google Scholar 

  • Gisbert C, Ros R, De Haro A, Walker DJ, Pilar Bernal M, Serrano R, Navarro-Aviñó J (2003) A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem Biophys Res Commun 303(2):440–445

    Article  PubMed  CAS  Google Scholar 

  • Gomes E (2011) Genotoxicity and cytotoxicity of Cr (VI) and Pb2+ in Pisum sativu. PhD thesis, University of Aveiro, Portugal

    Google Scholar 

  • Ground-Water Remediation Technologies Analysis Center, GWRTAC (1997) Remediation of metals-contaminated soils and groundwater. Technology Evaluation Report, TE-97-01, GWRTAC-E Series, Pittsburgh, PA 15238. http://www.gwrtac.org

  • Grover P, Rekhadevi P, Danadevi K, Vuyyuri S, Mahboob M, Rahman M (2010) Genotoxicity evaluation in workers occupationally exposed to lead. Int J Hyg Environ Health 213:99–106

    Article  PubMed  CAS  Google Scholar 

  • Gupta DK, Nicoloso FT, Schetinger M, Rossato LV, Pereira L, Castro GY, Srivastava S, Tripathi RD (2009) Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress. J Hazard Mater 172:479–484

    Article  PubMed  CAS  Google Scholar 

  • Gupta DK, Huang HG, Yang XE, Razafindrabe BH, Inouhe M (2010) The detoxification of lead in Sedum alfredii H. is not related to phytochelatins but the glutathione. J Hazard Mater 177: 437–444

    Article  PubMed  CAS  Google Scholar 

  • Hirsch RE, Lewis BD, Spalding EP, Sussman MR (1998) A role for the AKT1 potassium channel in plant nutrition. Science 280:918–921

    Article  PubMed  CAS  Google Scholar 

  • Huang JW, Cunningham SD (1996) Lead phytoextraction: species variation in lead uptake and translocation. New Phytol 134:75–84

    Article  CAS  Google Scholar 

  • Huang JW, Chen JJ, Berti WR, Cunningham SD (1997) Phytoremediation of lead-contaminated soils: role of synthetic chelates in lead phytoextraction. Environ Sci Technol 31:800–880

    Article  CAS  Google Scholar 

  • Interstate Technology and Regulatory Cooperation (ITRC) Work Group (1997) Emerging technologies for the phytoremediation of metals in soils (viii). http://www.itrcweb.org. Accessed 19 July 2012

  • Islam E, Liu D, Li T, Yang X, Jin X, Mahmood Q, Tian S, Li J (2008) Effect of Pb toxicity on leaf growth, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. J Hazard Mater 154:914–926

    Article  PubMed  CAS  Google Scholar 

  • Jabeen R, Ahmad A (2012) Phytoremediation of heavy metals: physiological and molecular mechanisms. Bot Rev 75(4):339–364

    Article  Google Scholar 

  • Jiang W, Liu D (2010) Pb-induced cellular defense system in the root meristematic cells of Allium sativum L. BMC Plant Biol 10:40–40

    Article  PubMed  Google Scholar 

  • Jung MC, Thornton I (1996) Heavy metal contamination of soils and plants in the vicinity of a lead-zinc mine korea. Appl Geochem 11:53–59

    Article  CAS  Google Scholar 

  • Kim YY, Yang YY, Lee Y (2002) Pb and Cd uptake in rice roots. Physiol Planta 116:368–372

    Article  CAS  Google Scholar 

  • Kim D, Bovet L, Kushnir S, Noh EW, Martinoia E, Lee Y (2006) AtATM3 is involved in heavy metal resistance in Arabidopsis. Plant Physiol 140:922–932

    Article  PubMed  CAS  Google Scholar 

  • Kirpichtchikova TA, Manceau A, Spadini L, Panfili F, Marcus MA, Jacquet T (2006) Speciation and solubility of heavy metals in Geochimica et Cosmochimica contaminated soil using X-ray microfluorescence, EXAFS spectroscopy, chemical extraction, and thermodynamic modeling. Geochim Cosmochim Acta 70:2163–2190

    Article  CAS  Google Scholar 

  • Kohler C, Merkle T, Neuhaus G (1999) Characterization of a novel gene family of putative cyclic nucleotide and calmodulin-regulated ion channels in Arabidopsis thaliana. Plant J 18:97–104

    Article  PubMed  CAS  Google Scholar 

  • Kopittke PM, Asher CJ, Kopittke RA, Menzies NW (2008) Prediction of Pb speciation in concentrated and dilute nutrient solutions. Environ Pollut 153:548–554

    Article  PubMed  CAS  Google Scholar 

  • Krzesłowska M, Lenartowska M, Mellerowicz EJ, Samardakiewicz S, Wozny A (2009) Pectinous cell wall thickenings formation: a response of moss protonemata cells to lead. Environ Exp Bot 65:119–131

    Article  Google Scholar 

  • Krzesłowska M, Lenartowska M, Samardakiewicz S, Bilski H, Wozny A (2010) Lead deposited in the cell wall of Funaria hygrometrica protonemata is not stable: a remobilization can occur. Environ Pollut 158:325–338

    Article  PubMed  Google Scholar 

  • Liu T, Liu S, Guan H, Ma L, Chen Z, Gu H (2009) Transcriptional profiling of Arabidopsis seedlings in response to heavy metal lead (Pb). Environ Exp Bot 67:377–386

    Article  CAS  Google Scholar 

  • Liu X, Peng K, Wang A, Lian C, Shen Z (2010) Cadmium accumulation and distribution in populations of Phytolacca americana L. and the role of transpiration. Chemosphere 78: 1136–1141

    Article  PubMed  CAS  Google Scholar 

  • Ma LQ, Komar KM, Tu C (2001) A fern that accumulates arsenic. Nature 409:579

    Article  PubMed  CAS  Google Scholar 

  • Maestri E, Marmiroli M, Visioli G, Marmiroli N (2010) Metal tolerance and hyperaccumulation: costs and trade-offs between traits and environment. Environ Exp Bot 68:1–13

    Article  CAS  Google Scholar 

  • Małecka A, Piechalak A, Morkunas I, Tomaszewska B (2008) Accumulation of lead in root cells of Pisum sativum. Acta Physiol Planta 30:629–637

    Article  Google Scholar 

  • Malone C, Koeppe DE, Miller RJ (1974) Localization of lead accumulated by corn plants. Plant Physiol 53:388–394

    Article  PubMed  CAS  Google Scholar 

  • McGrath SP, Zhao E (2003) Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. Plant Soil 232:207–214

    Article  Google Scholar 

  • McLaughlin MJ, Zarcinas BA, Stevens DP, Cook N (2000) Soil testing for heavy metals. Commun Soil Sci Plant Anal 31(11–14):1661–1700

    Article  CAS  Google Scholar 

  • Meyers DER, Auchterlonie GJ, Webb RI, Wood B (2008) Uptake and localization of lead in the root system of Brassica juncea. Environ Pollut 153:323–332

    Article  PubMed  CAS  Google Scholar 

  • Mishra S, Srivastava S, Tripathi RD, Kumar R, Seth C, Gupta DK (2006) Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere 65:1027–1039

    Article  PubMed  CAS  Google Scholar 

  • Munzuroglu O, Geckil H (2002) Effects of metals on seed germination, root elongation, and coleoptile and hypocotyl growth in Triticum aestivum and Cucumis sativus. Arch Environ Contam Toxicol 43:203–213

    Article  PubMed  CAS  Google Scholar 

  • Nanda-Kumar PBA, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238

    Article  Google Scholar 

  • Piechalak A, Tomaszewska B, Baralkiewicz D, Malecka A (2002) Accumulation and detoxification of lead ions in legumes. Phytochemistry 60(2):153–162

    Article  PubMed  CAS  Google Scholar 

  • Piotrowska A, Bajguz A, Godlewska-Zylkiewicz B, Czerpak R, Kaminska M (2009) Jasmonic acid as modulator of lead toxicity in aquatic plant Wolffia arrhiza (Lemnaceae). Environ Exp Bot 66(3):507–513

    Article  CAS  Google Scholar 

  • Pourrut B, Perchet G, Silvestre J, Cecchi M, Guiresse M, Pinelli E (2008) Potential role of NADPH-oxidase in early steps of lead-induced oxidative burst in Vicia faba roots. J Plant Physiol 165:571–579

    Article  PubMed  CAS  Google Scholar 

  • Prueb A (1997) Action values for mobile (NH4NO3) trace elements in soils based on the German National Standard DIN 19730. In: Prost R (ed) Contaminated soils. Proceedings of third international conference on the biogeochemistry of trace elements, INRA, Paris, France

    Google Scholar 

  • Punamiya P, Datta R, Sarkar D, Barber S, Patel M, Das P (2010) Symbiotic role of glomus mosseae in phytoextraction of lead in vetiver grass [Chrysopogon zizanioides (L.)]. J Hazard Mater 177(1–3):465–474

    Article  PubMed  CAS  Google Scholar 

  • Raskin I, Ensley BD (2000) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York

    Google Scholar 

  • Raskin I, Smith RD, Salt DE (1997) Phytoremediation of metals: using plants to remove pollutants from the environment. Curr Opin Biotech 8:221–226

    Article  PubMed  CAS  Google Scholar 

  • Rattan RK, Datta SP, Singh AK, (1997) Effect of long term application of sewage effluents on United States Protection Agency (USEPA) (1992). Selection of control technologies for remediation of lead battery recycling sites, EPA/540/S-92/011 US. Accessed 19 Jul 2012

    Google Scholar 

  • Rehren TH (2007) A review of factors affecting the composition of early Egyptian glasses and faience: alkali and alkali earth oxides. J Archeol Sci 35:1345–1354

    Article  Google Scholar 

  • Reuther C (1998) Growing cleaner: phytoremediation goes commercial, but many questions remain. http://www.sapphire.acnatsci.org/erd/ea/phyto.html. Accessed 19 July 2012

  • Rosselli W, Keller C, Boschi K (2003) Phytoextraction capacity of tree growing on a metal contaminated soil. Plant Soil 256:265–272

    Article  CAS  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Sci Total Environ 49:643–668

    CAS  Google Scholar 

  • Sammut M, Noack Y, Rose J, Hazemann J, Proux O, Depoux ZM, Fiani E (2010) Speciation of Cd and Pb in dust emitted from sinter plant. Chemosphere 78:445–450

    Article  PubMed  CAS  Google Scholar 

  • Seregin IV, Ivanov VB (2001) Physiological aspects of cadmium and lead toxic effects on higher plants. Russ J Plant Physiol 48:523–544

    Article  CAS  Google Scholar 

  • Seregin IV, Shpigun LK, Ivanov VB (2004) Distribution and toxic effects of cadmium and lead on maize roots. Russ J Plant Physiol 51:525–533

    Article  CAS  Google Scholar 

  • Shahid M, Pinelli E, Pourrut B, Silvestre J, Dumat C (2011) Lead-induced genotoxicity to Vicia faba L. roots in relation with metal cell uptake and initial speciation. Ecotoxicol Environ Saf 74:78–84

    Article  PubMed  CAS  Google Scholar 

  • Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17:35–52

    Article  CAS  Google Scholar 

  • Shu WS, Xia HP, Zhang ZQ, Lan CY, Wong MH (2002) Use of vetiver and three other grasses for revegetation of Pb/Zn mine tailings: field experiment. Int J Phytoremediation 4:47–57

    Article  CAS  Google Scholar 

  • Singh R, Tripathi RD, Dwivedi S, Kumar A, Trivedi PK, Chakrabarty D (2010) Lead bioaccumulation potential of an aquatic macrophyte Najas indica are related to antioxidant system. Bioresour Technol 101:3025–3032

    Article  PubMed  CAS  Google Scholar 

  • Tung G, Temple PJ (1996) Uptake and localization of lead in corn (Zea mays L.) seedlings: a study by histochemical and electron microscopy. Sci Total Environ 188:71–85

    Article  PubMed  CAS  Google Scholar 

  • United States Environmental Protection Agency (2000a) Electro kinetic and phytoremediation in situ treatment of metal-contaminated soil: state-of-the-practice. Office of Solid Waste and Emergency Response, Washington, DC

    Google Scholar 

  • United States Environmental Protection Agency (2000b) Lead and human health. http://www.epa.gov/superfund/programs/lead/lead.html. Accessed 19 July 2012

  • United States Environmental Protection Agency (2000c) Introduction to phytoremediation, EPA 600/R-99/107. US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH

    Google Scholar 

  • Uzu G, Sobanska S, Aliouane Y, Pradere P, Dumat C (2009) Study of lead phytoavailability for atmospheric industrial micronic and sub-micronic particles in relation with lead speciation. Environ Pollut 157:1178–1185

    Article  PubMed  CAS  Google Scholar 

  • Uzu G, Sobanska S, Sarret G, Munoz M, Dumat C (2010) Foliar lead uptake by lettuce exposed to atmospheric fallouts. Environ Sci Technol 44:1036–1042

    Article  PubMed  CAS  Google Scholar 

  • Vadas TM, Ahner BA (2009) Cysteine- and glutathione-mediated uptake of lead and cadmium into Zea mays and Brassica napus roots. Environ Pollut 157:2558–2563

    Article  PubMed  CAS  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Shan X, Wen B, Owens G, Fang J, Zhang S (2007) Effect of indole-3-acetic acid on lead accumulation in maize (Zea mays L.) seedlings and the relevant antioxidant response. Environ Exp Bot 61:246–253

    Article  CAS  Google Scholar 

  • Wojas S, Ruszczynska A, Bulska E, Wojciechowski M, Antosiewicz DM (2007) Ca2+-dependent plant response to Pb2+ is regulated by LCT1. Environ Pollut 147(3):584–592

    Google Scholar 

  • Wierzbicka M (1998) Lead in the apoplast of Allium cepa L. root tips–ultrastructural studies. Plant Sci 133:105–119

    Article  CAS  Google Scholar 

  • Wierzbicka MH, Przedpełska E, Ruzik R, Ouerdane L, Połe´c-Pawlak K, Jarosz M, Szpunar J, Szakiel A (2007) Comparison of the toxicity and distribution of cadmium and lead in plant cells. Protoplasma 231(1):99–111

    Article  PubMed  CAS  Google Scholar 

  • Xiong ZT (1997) Bioaccumulation and physiological effects of excess lead in a roadside pioneer species Sonchus oleraceus L. Environ Pollut 97:275–279

    Article  PubMed  CAS  Google Scholar 

  • Yadav S (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76(2):167–179

    Article  CAS  Google Scholar 

  • Yang XE, Long XX, Ni WZ, Fu CX (2005) Sedum alfredii H: a new Zn hyperaccumulating plant first found in China. Chin Sci Bull 47:1634–1637

    CAS  Google Scholar 

  • Zhou QX, Song YF (2004) Principal and methods of contaminate soil remediation. Science, Beijing, 75 pp

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olabisi Peter Abioye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Abioye, O.P., Ijah, U.J.J., Aransiola, S.A. (2013). Remediation Mechanisms of Tropical Plants for Lead-Contaminated Environment. In: Gupta, D. (eds) Plant-Based Remediation Processes. Soil Biology, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35564-6_4

Download citation

Publish with us

Policies and ethics