Advertisement

Metal/Metalloid Phytoremediation: Ideas and Future

  • Mirosław MleczekEmail author
  • Aneta Piechalak
  • Barbara Tomaszewska
  • Kinga Drzewiecka
  • Przemysław Nuc
Chapter
Part of the Soil Biology book series (SOILBIOL, volume 35)

Abstract

This chapter addresses some of the most significant issues in phytoremediation. We described the most important developments in this environment, cleaning method and presented some significant ways for future development. Additionally, this work presents the impact of endo- and exogenous salicylic acid on plant tolerance to presence of metal ions and the biochemical response to metals. Finally, we discuss one of the most significant aspects described in many studies: the genetic background of plant hyperaccumulation and adaptation to toxic concentrations of metals/metalloids.

Keywords

Heavy Metal Salicylic Acid Salicylic Acid Treatment Short Rotation Coppice Exogenous Salicylic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adegbidi HG, Volk TA, White EH, Abrahamson LP, Briggs RD, Bickelhaupt DH (2001) Biomass and nutrient removal by willow clones in experimental bioenergy plantations in New York State. Biomass Bioenerg 20:399–411CrossRefGoogle Scholar
  2. Ali W, Isayenkov SV, Zhao FJ, Maathuis FJ (2009) Arsenite transport in plants. Cell Mol Life Sci 66:2329–2339PubMedCrossRefGoogle Scholar
  3. Aravind P, Prasad MNV (2005) Cadmium–Zinc interactions in a hydroponic system using Ceratophyllum demersum L.: adaptive ecophysiology, biochemistry and molecular toxicology. Braz J Plant Physiol 17:3–20CrossRefGoogle Scholar
  4. Arisi ACM, Mocquot B, Lagriffoul A, Mench M, Foyer CH, Jouanin L (2000) Responses to cadmium in leaves of transformed poplars overexpressing γ-glutamylcysteine synthetase. Physiol Plant 109:143–149CrossRefGoogle Scholar
  5. Barałkiewicz D, Kózka M, Piechalak A, Tomaszewska B, Sobczak P (2009) Application of HPLC-ICP-MS and HPLC-MS to determination of Cd and Pb species and phytochelatins in pea (Pisum sativum). Talanta 79:493–498PubMedCrossRefGoogle Scholar
  6. Becher M, Talke IN, Krall L, Krämer U (2004) Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant J 37:251–268PubMedCrossRefGoogle Scholar
  7. Belkadhi A, Hédiji H, Abbes Z, Djebali W, Chaïbi W (2012) Influence of salicylic acid pre-treatment on cadmium tolerance and its relationship with non-protein thiol production in flax root. Afr J Biotechnol 11:9788–9796Google Scholar
  8. Bernal M, Testillano PS, Alfonso M, del Carmen Risueno M, Picorel R, Yruela I (2007) Identification and subcellular localization of the soybean copper P1B-ATPase GmHMA8 transporter. J Struct Biol 158:46–58PubMedCrossRefGoogle Scholar
  9. Bernal M, Casero D, Singh V, Wilson GT, Grande A, Yang H, Dodani SC, Pellegrini M, Huijser P, Connolly EL, Merchant SS, Krämer U (2012) Transcriptome sequencing identifies SPL7-regulated copper acquisition genes FRO4/FRO5 and the copper dependence of iron homeostasis in Arabidopsis. Plant Cell 24:738–761PubMedCrossRefGoogle Scholar
  10. Cailliatte R, Lapeyre B, Briat J-F, Mari S, Curie C (2009) The NRAMP6 metal transporter contributes to cadmium toxicity. Biochem J 422:217–228PubMedCrossRefGoogle Scholar
  11. Callahan DL, Baker AJM, Kolev SD, Wedd AG (2006) Metal ion ligands in hyperaccumulating plants. J Biol Inorg Chem 11:2–12PubMedCrossRefGoogle Scholar
  12. Catarecha P, Segura MD, Franco-Zorrilla JM, Garcia-Ponce B, Lanza M, Solano R, Paz-Ares J, Leyva A (2007) A mutant of the Arabidopsis phosphate transporter PHT1;1 displays enhanced arsenic accumulation. Plant Cell 19:1123–1133PubMedCrossRefGoogle Scholar
  13. Catty P, Boutigny S, Miras R, Joyard J, Rolland N, Seigneurin-Berny D (2011) Biochemical characterization of AtHMA6/PAA1, a chloroplast envelope Cu(I)-ATPase. J Biol Chem 286:36188–36197. doi: 10.1074/jbc.M111.241034 PubMedCrossRefGoogle Scholar
  14. Cho UH, Park JO (2000) Mercury-induced oxidative stress in tomato seedlings. Plant Sci 156:1–9PubMedCrossRefGoogle Scholar
  15. Choudhury S, Panda SK (2004) Role of salicylic acid in regulating cadmium induced oxidative stress in Oryza Sativa L. roots. Bulg J Plant Physiol 30:95–110Google Scholar
  16. Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212: 475–486PubMedCrossRefGoogle Scholar
  17. Clemens S, Palmgren MG, Krämer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–315PubMedCrossRefGoogle Scholar
  18. Colangelo EP, Guerinot ML (2006) Put the metal to the petal: metal uptake and transport throughout plants. Curr Opin Plant Biol 9:322–330PubMedCrossRefGoogle Scholar
  19. Dat JF, Vandenabeele S, Vranova E, Van Montagu M, Inze D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795PubMedCrossRefGoogle Scholar
  20. Deinlein U, Weber M, Schmidt H, Rensch S, Trampczynska A, Hansen TH, Husted S, Schjoerring JK, Talke IN, Krämer U, Clemens S (2012) Elevated nicotianamine levels in Arabidopsis halleri roots play a key role in Zn hyperaccumulation. Plant Cell 24:708–723PubMedCrossRefGoogle Scholar
  21. Delhaize E (2003) Genes encoding proteins of the cation diffusion facilitator family that confer manganese tolerance. Plant Cell Online 15:1131–1142CrossRefGoogle Scholar
  22. Delhaize E, Gruber BD, Pittman JK, White RG, Leung H, Miao Y, Jiang L, Ryan PR, Richardson AE (2007) A role for the AtMTP11 gene of Arabidopsis in manganese transport and tolerance. Plant J 51:198–210PubMedCrossRefGoogle Scholar
  23. Desbrosses-Fonrouge A, Voight K, Schroder A, Arrivault S, Thomine S, Kraemer U (2005) Arabidopsis thaliana MTP1 is a Zn transporter in the vacuolar membrane which mediates Zn detoxification and drives leaf Zn accumulation. FEBS Lett 579:4165–4174PubMedCrossRefGoogle Scholar
  24. Dimitriou I, Rosenqvist H (2011) Sewage sludge and wastewater fertilisation of Short Rotation Coppice (SRC) for increased bioenergy production–biological and economic potential. Biomass Bioenerg 35:835–842CrossRefGoogle Scholar
  25. Directive 2009/28/EC of the European Parliament and of the Council of 23 April (2009) on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/ECGoogle Scholar
  26. Drzewiecka K, Mleczek M, Gąsecka M, Magdziak Z, Goliński P (2012) Changes in Salix viminalis L. cv. ‘Cannabina’ morphology and physiology in response to nickel ions – hydroponic investigations. J Hazard Mater 217:429–438PubMedCrossRefGoogle Scholar
  27. Farina R, Beneduzi A, Ambrosini A, de Campos SB, Lisboa BB, Wendisch V, Vargas LK, Passaglia LMP (2012) Diversity of plant growth-promoting rhizobacteria communities associated with the stages of canola growth. Appl Soil Ecol 55:44–52CrossRefGoogle Scholar
  28. Freeman JL, Persans MW, Nieman K, Albrecht C, Peer W, Pickering IJ, Salt DE (2004) Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell 16:2176–2191PubMedCrossRefGoogle Scholar
  29. Freeman JL, Garcia D, Kim D, Hopf A, Salt DE (2005) Constitutively elevated salicylic acid signals glutathione-mediated nickel tolerance in Thlaspi hyperaccumulators. Plant Physiol 137:1082–1091PubMedCrossRefGoogle Scholar
  30. Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 92:407–418PubMedCrossRefGoogle Scholar
  31. Gąsecka M, Mleczek M, Drzewiecka K, Magdziak Z, Rissmann I, Chadzinikolau T, Goliński P (2012) Physiological and morphological changes in Salix viminalis L. as a result of plant exposure to copper. J Environ Sci Health A 47:548–557Google Scholar
  32. Gendre D, Czernic P, Conéjéro G, Pianelli K, Briat J-F, Lebrun M, Mari S (2006) TcYSL3, a member of the YSL gene family from the hyper-accumulator Thlaspi caerulescens, encodes a nicotianamine-Ni/Fe transporter. Plant J 49:1–15PubMedCrossRefGoogle Scholar
  33. Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374PubMedCrossRefGoogle Scholar
  34. Gonzalez E, Solano R, Rubio V, Leyva A, Paz-Ares J (2005) PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR1 is a plant-specific SEC12-related protein that enables the endoplasmic reticulum exit of a high-affinity phosphate transporter in Arabidopsis. Plant Cell 17: 3500–3512PubMedCrossRefGoogle Scholar
  35. Grill E, Winnacker EL, Zenk MH (1985) Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science 230:674–676PubMedCrossRefGoogle Scholar
  36. Grill E, Loffler S, Winnacker EL, Zenk MH (1989) Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific γ -glutamylcysteine dipeptidyl trans-peptidase (phytochelatin synthase). Proc Natl Acad Sci USA 86:6838–6842PubMedCrossRefGoogle Scholar
  37. Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53: 1–11PubMedCrossRefGoogle Scholar
  38. Hanikenne M, Talke IN, Haydon MJ, Lanz C, Nolte A, Motte P, Kroymann J, Weigel D, Krämer U (2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453:391–395PubMedCrossRefGoogle Scholar
  39. Haydon MJ, Cobbett CS (2007) Transporters of ligands for essential metal ions in plants. New Phytol 174:499–506PubMedCrossRefGoogle Scholar
  40. Haydon MJ, Kawachi M, Wirtz M, Stefan H, Hell R, Krämer U (2012) Vacuolar nicotianamine has critical and distinct roles under iron deficiency and for zinc sequestration in Arabidopsis. Plant Cell 24:724–737PubMedCrossRefGoogle Scholar
  41. Herbette S, Taconnat L, Hugouvieux V, Piette L, Magniette ML, Cuine S, Auroy P, Richaud P, Forestier C, Bourguignon J, Renou JP, Vavasseur A, Leonhardt N (2006) Genome-wide transcriptome profiling of the early cadmium response of Arabidopsis roots and shoots. Biochimie 88:1751–1765PubMedCrossRefGoogle Scholar
  42. Hossain MA, Piyatidaet P, da Silva JAT, Fijita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: Central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot. doi: 10.1155/2012/872875
  43. Indriolo E, Na G, Ellis D, Salt DE, Banks JA (2010) A vacuolar arsenite transporter necessary for arsenic tolerance in the arsenic hyperaccumulating fern Pteris vittata is missing in flowering plants. Plant Cell 22:2045–2057PubMedCrossRefGoogle Scholar
  44. Ingle RA, Mugford ST, Rees JD, Campbell MM, Smith JAC (2005) Constitutively high expression of the histidine biosynthetic pathway contributes to nickel tolerance in hyperaccumulator plants. Plant Cell 17:2089–2106PubMedCrossRefGoogle Scholar
  45. Ishimaru Y, Bashir K, Inoue H, Tsukamoto T, Takahashi M, Nakanishi H, Aoki N, Hirose T, Ohsugi R, Nishizawa NK (2010) Rice metal-nicotianamine transporter, OsYSL2, is required for the long-distance transport of iron and manganese. Plant J 62:379–390. doi: 10.1111/j.1365-313X.2010.04158.x PubMedCrossRefGoogle Scholar
  46. Jabeen R, Ahmad A, Iqbal M (2009) Phytoremediation of heavy metals: physiological and molecular mechanisms. Bot Rev 75:339–364CrossRefGoogle Scholar
  47. Jha Y, Subramanian RB, Patel S (2011) Combination of endophytic and rhizospheric plant growth promoting rhizobacteria in Oryza sativa shows higher accumulation of osmoprotectant against saline stress. Acta Physiol Plant 33:797–802CrossRefGoogle Scholar
  48. Kamiya T, Tanaka M, Mitani N, Ma JF, Maeshima M, Fujiwara T (2009) NIP1;1, an aquaporin homolog, determines the arsenite sensitivity of Arabidopsis thaliana. J Biol Chem 23: 2114–2120Google Scholar
  49. Kawachi M, Kobae Y, Mori H, Tomioka R, Lee Y, Maeshima M (2009) A mutant strain Arabidopsis thaliana that lacks vacuolar membrane zinc transporter MTP1 revealed the latent tolerance to excessive zinc. Plant Cell Physiol 50:1156–1170PubMedCrossRefGoogle Scholar
  50. Kim YY, Choi H, Segami S, Cho HT, Martinoia E, Maehima M, Lee Y (2009) AtHMA1 contributes to the detoxification of excess Zn(II) in Arabidopsis. Plant J 58:737–753. doi: 10.1111/j.1365-313X.2009.03818.x PubMedCrossRefGoogle Scholar
  51. Kotrba P, Najmanova J, Macek T, Ruml T, Mackova M (2009) Genetically modified plants in phytoremediation of heavy metal and metalloid soil and sediment pollution. Biotechnol Adv 27:799–810PubMedCrossRefGoogle Scholar
  52. Kováčik J, Grúz J, Hedbavny J, Klejdus B, Strnad M (2009) Cadmium and nickel uptake are differentially modulated by salicylic acid in Matricaria chamomilla plants. J Agric Food Chem 57:9848–9855PubMedCrossRefGoogle Scholar
  53. Krämer U, Pickering IJ, Prince RC, Raskin I, Salt DE (2000) Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiol 122:1343–1354PubMedCrossRefGoogle Scholar
  54. Krupa Z (1988) Cadmium-induced changes in the composition and structure of the light-harvesting chlorophyll a/b protein complex II in radish cotyledons. Physiol Planta 73:518–524CrossRefGoogle Scholar
  55. Küpper H, Küpper F, Spiller M (1996) Environmental relevance of heavy metal-substituted chlorophylls using the example of water plants. J Exp Bot 47:259–266CrossRefGoogle Scholar
  56. Le Jean M, Schikora A, Mari S, Briat JF, Curie C (2005) A loss-of-function mutation in AtYSL1 reveals its role in iron and nicotianamine seed loading of Fe and NA into seeds. Plant J 44:769–782PubMedCrossRefGoogle Scholar
  57. Li JY, Fu YL, Pike SM, Bao J, Tian W, Zhang Y, Chen CZ, Zhang Y, Li HM, Huang J, Li LG, Schroeder JI, Gassmann W, Gong JM (2010) The Arabidopsis nitrate transporter NRT1.8 functions in nitrate removal from the xylem sap and mediates cadmium tolerance. Plant Cell 22:1633–1646. doi: 10.1105/tpc.110.075242 PubMedCrossRefGoogle Scholar
  58. Lin R, Wang X, Luo Y, Du W, Guo H, Yin D (2007) Effects of soil cadmium on growth, oxidative stress and antioxidant system in wheat seedlings (Triticum aestivum L.). Chemosphere 69: 89–98PubMedCrossRefGoogle Scholar
  59. Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258PubMedCrossRefGoogle Scholar
  60. Maksymiec W, Krupa Z (2006) The effects of short-term exposition to Cd, excess Cu ions and jasmonate on oxidative stress appearing in Arabidopsis thaliana. Environ Exp Bot 57:187–194CrossRefGoogle Scholar
  61. Małecka A, Piechalak A, Morkunas I, Tomaszewska B (2008) Transport and localization of lead in root cells of Pisum sativum. Acta Physiol Planta 30:629–637CrossRefGoogle Scholar
  62. Małecka A, Piechalak A, Tomaszewska B (2009) Reactive oxygen species production and antioxidative defense system in pea root cells treated with lead ions: the whole roots level. Acta Physiol Planta 31:1053–1063CrossRefGoogle Scholar
  63. Masuda H, Ishimaru Y, Aung MS, Kobayashi T, Kakei Y, Takahashi M, Higuchi K, Nakanishi H, Nishizawa NK (2012) Iron biofortification in rice by the introduction of multiple genes involved in iron nutrition. Sci Rep 2:543PubMedGoogle Scholar
  64. Memon AR, Schröder P (2009) Implications of metal accumulation mechanisms to phytoremediation. Environ Sci Pollut Res 16:162–175CrossRefGoogle Scholar
  65. Metwally A, Finkemeier I, Georgi M, Dietz KJ (2003) Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiol 132:272–281PubMedCrossRefGoogle Scholar
  66. Metwally A, Safronova VI, Belimov AA, Dietz KJ (2005) Genotypic variation of the response to cadmium toxicity in Pisum sativum L. J Exp Bot 56:167–178PubMedGoogle Scholar
  67. Minglin L, Yuxiu Z, Tuanyao C (2005) Identification of genes up-regulated in response to Cd exposure in Brassica juncea L. Gene 363:151–158PubMedCrossRefGoogle Scholar
  68. Miransari M (2011) Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol Adv 29:645–653PubMedCrossRefGoogle Scholar
  69. Mleczek M, Kozłowska M, Kaczmarek Z, Magdziak Z, Goliński P (2012) Cadmium and lead uptake by Salix viminalis under modified Ca/Mg ratio. Ecotoxicology 20:158–165CrossRefGoogle Scholar
  70. Moreno I, Norambuena L, Maturana D, Toro M, Vergara C, Orellana A, Zurita-Silva A, Ordenes VR (2008) AtHMA1 is a thapsigargin-sensitive Ca2+/heavy metal pump. J Biol Chem 283:9633–9641. doi: 10.1074/jbc.M800736200 PubMedCrossRefGoogle Scholar
  71. Nada E, Ferjani BA, Ali R, Bechir BR, Imed M, Makki B (2007) Cadmium induced growth inhibition and alteration of biochemical parameters in almond seedlings grown in solution culture. Acta Physiol Planta 29:57–62CrossRefGoogle Scholar
  72. Padmaja K, Prasad DDK, Prasad ARK (1990) Inhibition of chlorophyll synthesis in Phaseolus vulgaris L. seedlings by cadmium acetate. Photosynthesis 24:399–405Google Scholar
  73. Pál M, Szalai G, Horváth E, Janda T, Páldi E (2002) Effect of salicylic acid during heavy metal stress. Acta Biol Szeged 46:119–120Google Scholar
  74. Pál M, Horváth E, Janda T, Páldi E, Szalai G (2005) Cadmium stimulates accumulation of salicylic acid and its putative precursors in maize (Zea mays L.) plants. Physiol Planta 125:356–364CrossRefGoogle Scholar
  75. Pál M, Horváth E, Janda T, Páldi E, Szalai G (2006) Physiological changes and defense mechanisms induced by cadmium stress in maize. J Plant Nutr Soil Sci 169:239–246CrossRefGoogle Scholar
  76. Palma JM, Sandalio LM, Javier Corpas F, Romero-Puertas MC, McCarthy I, del Río LA (2002) Plant proteases protein degradation and oxidative stress: role of peroxisomes. Plant Physiol Biochem 40:521–530CrossRefGoogle Scholar
  77. Peng JF, Song YH, Yuan P, Cui XY, Qiu GL (2009) The remediation of heavy metals contaminated sediment. J Hazard Mater 161:633–640PubMedCrossRefGoogle Scholar
  78. Pich A, Scholz G (1993) The relationship between the activity of various iron-containing and iron-free enzymes and the presence of nicotianamine in tomato seedlings. Physiol Planta 88: 172–178CrossRefGoogle Scholar
  79. Piechalak A, Tomaszewska B, Barałkiewicz D, Małecka A (2002) Accumulation and detoxification of lead ions in legumes. Phytochemistry 60:153–162PubMedCrossRefGoogle Scholar
  80. Piechalak A, Tomaszewska B, Barałkiewicz D (2003) Enhancing phytoremediative ability of Pisum sativum by EDTA application. Phytochemistry 64:1239–1251PubMedCrossRefGoogle Scholar
  81. Pittman JK (2005) Managing the manganese: molecular mechanisms of manganese transport and homeostasis. New Phytol 167:733–742PubMedCrossRefGoogle Scholar
  82. Popova L, Maslenkova L, Yordanova R, Krantev A, Szalai G, Janda T (2008) Salicylic acid protects photosynthesis against cadmium toxicity in pea plants. Gen Appl Plant Physiol 34: 133–148Google Scholar
  83. Prasad A, Kumar S, Khaliq A, Pandey A (2011) Heavy metals and arbuscular mycorrhizal (AM) fungi can alter the yield and chemical composition of volatile oil of sweet basil (Ocimum basilicum L.). Biol Fertil Soils 47:853–861CrossRefGoogle Scholar
  84. Rajkumar M, Noriharu A, Freitas H (2010) Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere 77:153–160CrossRefGoogle Scholar
  85. Raskin I (1992) Role of salicylic acid in plants. Annu Rev Plant Physiol Plant Mol Biol 43: 439–463CrossRefGoogle Scholar
  86. Romero-Puertas MC, Corpas FJ, Rodriguez-Serrano M, Gomez M, del Rio LA, Sandalio LM (2007) Differential expression and regulation of antioxidative enzymes by cadmium in pea plants. J Plant Physiol 164:1346–1357PubMedCrossRefGoogle Scholar
  87. Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648PubMedCrossRefGoogle Scholar
  88. Sanità di Toppi L, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130CrossRefGoogle Scholar
  89. Sasaki A, Yamaji N, Yokosho K, Ma JF (2012) Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell 24:2155–2167PubMedCrossRefGoogle Scholar
  90. Schaaf G (2005) A putative function for the Arabidopsis Fe–phytosiderophore transporter homolog AtYSL2 in Fe and Zn homeostasis. Plant Cell Physiol 46:762–774PubMedCrossRefGoogle Scholar
  91. Shah K, Dubey RS (1997) Effect of cadmium on proline accumulation and ribonuclease activity in rice seedlings: role of proline as a possible enzyme protectant. Biol Planta 40:121–130CrossRefGoogle Scholar
  92. Shahzad Z, Gosti F, Frérot H, Lacombe E, Roosens N, Saumitou-Laprade P, Berthomieu P (2010) The five AhMTP1 zinc transporters undergo different evolutionary fates towards adaptive evolution to zinc tolerance in Arabidopsis halleri. PLoS Genet 6:1000911. doi: 10.1371/journal.pgen.1000911 CrossRefGoogle Scholar
  93. Singh A, Prasad SH (2011) Reduction of heavy metal load in food chain: technology assessment. Rev Environ Sci Biotechnol 10:199–214CrossRefGoogle Scholar
  94. Song WY, Choi KS, Kimdo Y, Geisler M, Park J, Vincenzetti V, Schellenberg M, Kim SH, Lim YP, Noh EW, Lee Y, Martinoia E (2010a) Arabidopsis PCR2 is a zinc exporter involved in both zinc extrusion and long-distance zinc transport. Plant Cell 22:2237–2252Google Scholar
  95. Song WY, Park J, Mendoza-Cózatl DG, Suter-Grotemeyer M, Shim D, Hörtensteiner S, Geisler M, Weder B, Rea PA, Rentsch D, Schroeder JI, Lee Y, Martinoia E (2010b) Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proc Natl Acad Sci USA 107:21187–21192PubMedCrossRefGoogle Scholar
  96. Takahashi M, Terada Y, Nakai I, Nakanishi H, Yoshimura E, Mori S, Nishizawa NK (2003) Role of nicotianamine in the intracellular delivery of metals and plant reproductive development. Plant Cell 15:1263–1280PubMedCrossRefGoogle Scholar
  97. Talke IN, Hanikenne M, Krämer U (2006) Zinc-dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri. Plant Physiol 142:148–167PubMedCrossRefGoogle Scholar
  98. Tang S, Liao S, Guo J, Song Z, Wang R, Zhou X (2012) Growth and caesium uptake responses of Phytolacca americana Linn. and Amaranthus cruentus L. grown on caesium contaminated soil to elevated CO2 or inoculation with a plant growth promoting rhizobacterium Burkholderia sp. D54, or in combination. J Hazard Mater 198:188–197CrossRefGoogle Scholar
  99. Van Assche F, Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 13:195–206CrossRefGoogle Scholar
  100. Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776PubMedCrossRefGoogle Scholar
  101. Vert GA (2003) Dual regulation of the Arabidopsis high-affinity root iron uptake system by local and long-distance signals. Plant Physiol 132:796–804PubMedCrossRefGoogle Scholar
  102. Wang X, Wang Y, Mahmood Q, Islam E, Jin X, Li T, Yang X, Liu D (2009) The effect of EDDS addition on the phytoextraction efficiency from Pb contaminated soil by Sedum alfredii Hance. J Hazard Mater 168:530–535PubMedCrossRefGoogle Scholar
  103. Waters BM, Chu HH, Didonato RJ, Roberts LA, Eisley RB, Lahner B, Salt DE, Walker EL (2006) Mutations in Arabidopsis yellow stripe-like1 and yellow stripe-like3 reveal their roles in metal ion homeostasis and loading of metal ions in seeds. Plant Physiol 141:1446–1458PubMedCrossRefGoogle Scholar
  104. Weyens N, Schellingen K, Dupae J, Croes S, van der Lelie D, Vangronsveld J (2010) Can bacteria associated with willow explain differences in Cd accumulation capacity between different cultivars? J Biotechnol 150:291–292CrossRefGoogle Scholar
  105. Witters N, Mendelsohn RO, Van Slycken S, Weyens N, Schreurs E, Meers E, Tack F, Carleer R, Vangronsveld J (2012) Phytoremediation, a sustainable remediation technology? Conclusions from a case study. I: Energy production and carbon dioxide abatement. Biomass Bioenerg 39: 454–469CrossRefGoogle Scholar
  106. Wójcik M, Tukiendorf A (2011) Glutathione in adaptation of Arabidopsis thaliana to cadmium stress. Biol Planta 55:125–132CrossRefGoogle Scholar
  107. Wu H, Chen C, Du J, Liu H, Cui Y, Zhang Y, He Y, Wang Y, Chu C, Feng Z, Li J, Ling HQ (2012) Co-overexpression FIT with AtbHLH38 or AtbHLH39 in Arabidopsis-enhanced cadmium tolerance via increased cadmium sequestration in roots and improved iron homeostasis of shoots. Plant Physiol 158:790–800. doi: 10.1104/pp.111.190983 PubMedCrossRefGoogle Scholar
  108. Yadav R, Arora P, Kumar S, Chaudhury A (2010) Perspectives for genetic engineering of poplars for enhanced phytoremediation abilities. Ecotoxicology 19:1574–1588PubMedCrossRefGoogle Scholar
  109. Zhao S, Lian F, Duo L (2011) EDTA-assisted phytoextraction of heavy metals by turf grass from municipal solid waste compost using permeable barriers and associated potential leaching risk. Bioresour Technol 102:621–626PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mirosław Mleczek
    • 1
    Email author
  • Aneta Piechalak
    • 2
  • Barbara Tomaszewska
    • 2
  • Kinga Drzewiecka
    • 1
  • Przemysław Nuc
    • 2
  1. 1.Department of ChemistryPoznań University of Life SciencesPoznańPoland
  2. 2.Department of Biochemistry, Institute of Molecular Biology and BiotechnologyAdam Mickiewicz University in PoznańPoznańPoland

Personalised recommendations