Skip to main content

Phytoremediation Towards the Future: Focus on Bioavailable Contaminants

  • Chapter
  • First Online:
Book cover Plant-Based Remediation Processes

Part of the book series: Soil Biology ((SOILBIOL,volume 35))

Abstract

The hypothesis that one of the possible future trends of phytoextraction should be the removal of the bioavailable contaminants has recently received renewed and increasing interest. This fraction is the most hazardous to the environment and human health. The evaluation of contaminant bioavailability is essential for the appropriate application of the technology. Before selecting a phytoextraction process, it is necessary to consider the specific characteristics of the soil at the contaminated site in order to evaluate how the soil properties will influence the final result of remediation in the field. With this approach based on the concept of bioavailable contaminant stripping (BCS), an evaluation of the hazards of the residual fraction not removed by plants is left to a risk assessment procedure. This approach can be safely applied, if the soil ability to replenish the bioavailable pools in the long term is considered. This problem can be overcome by enhanced bioavailable contaminant stripping (EBCS) which evaluates this amount through the combined use of chemical extraction with a mobilizing agent, specific for each metal, and pot experiments in which successive growing cycles must confirm the absence of the bioavailable fractions. Phytoextraction can be selected as “green remediation” to minimize the mobile and bioavailable fractions of contaminants, while improving soil quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullah S, Sarem SM (2010) The potential of Chrysanthemum and Pelargonium for phytoextraction of lead-contaminated soils. J Civ Eng 4:409–416

    Google Scholar 

  • Alexander AM (2000) Bioavailability and overestimation of risk from environmental pollutants. Environ Sci Technol 34:4259–4265

    Article  CAS  Google Scholar 

  • Barbafieri M, Tassi E (2010) Plant growth regulators for phytoremediation technologies. In: 20th International conference on plant growth substances (IPGSA), Tarragona, Spain

    Google Scholar 

  • Bizily SP, Rugh CP, Meagher RB (2000) Phytodetoxification of hazardous organomercurials by genetically engineered plants. Nat Biotechnol 18:213–217

    Article  PubMed  CAS  Google Scholar 

  • Cao A, Crucci A, Lai T, La Colla P, Tamburini E (2007) Effect of biodegradable chelating agents on heavy metals phytoextraction with Mirabilis jalapa and on its associated bacteria. Eur J Soil Biol 43:200–206

    Article  CAS  Google Scholar 

  • Cassina L, Tassi E, Pedron F, Petruzzelli G, Ambrosini P, Barbafieri M (2012) Using plant hormone and thioligand to improve phytoremediation of Hg-contaminated soil from a petrochemical plant. J Hazard Mater 231(232):36–42

    Article  PubMed  Google Scholar 

  • Chaney RL, Angle JS, McIntosh MS, Reeves RD, Li YM, Brewer EP, Chen KY, Roseberg RJ, Perner H, Synkowski EC, Broadhurst CL, Wang S, Baker AJM (2005) Using hyper accumulator plants to phytoextract soil Ni and Cd. Z Naturforsch C 60:190–198

    PubMed  CAS  Google Scholar 

  • Cherlatchka R, Cambier P (2000) Influence of reducing conditions on solubility of trace metals in contaminated soils. Water Air Soil Pollut 118:143–167

    Article  Google Scholar 

  • Doumett S, Lamperi L, Checchini L, Azzarello E, Mugnai S, Mancuso S, Petruzzelli G, Del Bubba M (2008) Heavy metal distribution between contaminated soil and Paulownia tomentosa, in a pilot-scale assisted phytoremediation study: influence of different complexing agents. Chemosphere 72:1481–1490

    Article  PubMed  CAS  Google Scholar 

  • Doumett S, Fibbi D, Azzarello E, Mancuso S, Mugnai S, Petruzzelli G, Del Bubba M (2011) Influence of the application renewal of glutamate and tartrate on Cd, Cu, Pb and Zn distribution between contaminated soil and Paulownia Tomentosa in a pilot-scale assisted phytoremediation study. Int J Phytoremediation 13:1–17

    Article  PubMed  CAS  Google Scholar 

  • Ehlers LJ, Luthy RG (2003) Contaminant bioavailability in soil and sediment. Environ Sci Technol 37:295A–302A

    Article  PubMed  CAS  Google Scholar 

  • Ernst WHO (2005) Phytoextraction of mine wastes e options and impossibilities. Chem Erde 65:29–42

    Article  CAS  Google Scholar 

  • Evangelou MWH, Ebel M, Schaeffer A (2006) Evaluation of the effect of small organic acids on phytoextraction of Cu and Pb from soil with Nicotiana tabacum. Chemosphere 63:996–1004

    Article  PubMed  CAS  Google Scholar 

  • Evangelou MWH, Ebel M, Hommes G, Schaeffer A (2008) Biodegradation: the reason for the inefficiency of small organic acids in chelant-assisted phytoextraction. Water Air Soil Pollut 195:177–188

    Article  CAS  Google Scholar 

  • Fitz WJ, Wenzel WW (2002) Arsenic transformations in the soil-rhizosphere- plant system: fundamentals and potential application to phytoremediation. J Biotechnol 99:259–278

    Article  PubMed  CAS  Google Scholar 

  • Fitz WJ, Wenzel WW, Zhang H, Nurmi J, Štipek K, Fischerova Z, Schweiger P, Köllensperger G, MaL Q, Stingeder G (2003) Rhizosphere characteristics of the arsenic hyperaccumulator Pteris vittata L. and monitoring of phytoremoval efficiency. Environ Sci Technol 37:5008–5014

    Article  PubMed  CAS  Google Scholar 

  • Ghaderian SM, Mohtadi A, Rahiminejad R, Reeves RD, Baker AJM (2007) Hyperaccumulation of nickel by two Alyssum species from the serpentine soils of Iran. Plant Soil 293:91–97

    Article  CAS  Google Scholar 

  • Giansoldati V, Tassi E, Morelli E, Gabellieri E, Pedron F, Barbafieri M (2012) Nitrogen fertilizer improves boron phytoextraction by Brassica juncea grown in contaminated sediments and alleviates plant stress. Chemosphere 87:1119–1125

    Article  PubMed  CAS  Google Scholar 

  • Hamon RE, McLaughlin MJ (1999) Use of the hyperaccumulator Thlaspi cearulescens for bioavailable contaminant stripping. In: Wenzel WW, Adriano DC, Alloway B, Doner H, Keller C, Lepp NW, Mench M, Naidu R, Pierzynski GM (eds) Extended abstracts of the fifth international conference on the biogeochemistry of trace elements (ICOBTE), Vienna

    Google Scholar 

  • Hinsinger P, Courchesne F (2008) Biogeochemistry of metals and metalloids at the soil-root interface. In: Violante A, Huang PM, Gadd GM (eds) Biophysico-chemical processes of heavy metals and metalloids in soil environments. Wiley, Hoboken, NJ

    Google Scholar 

  • Hough RL, Tye AM, Crout NMJ, McGrath SP, Zhang H, Young SD (2005) Evaluating a ‘Free Ion Activity Model’ applied to metal uptake by Lolium perenne L. grown in contaminated soils. Plant Soil 70:1–12

    Article  Google Scholar 

  • Hussein HS, Ruiz ON, Terry N, Daniell H (2007) Phytoremediation of mercury and organomercurials in chloroplast transgenic plants: enhanced root uptake, translocation to shoots, and volatilization. Environ Sci Technol 41:8439–8446

    Article  PubMed  CAS  Google Scholar 

  • Koopmans GF, Romkens PFAM, Song J, Temminghoff EJM, Japenga J (2007) Predicting the phytoextraction duration to remediate heavy metal contaminated soils. Water Air Soil Pollut 181:355–371

    Article  CAS  Google Scholar 

  • Lehto NJ, Davison W, Zhang H, Tych W (2006) Theoretical comparison of how soil processes affect uptake of metals by diffusive gradients in thin films and plants. J Environ Qual 5:1903–1913

    Article  Google Scholar 

  • Li YM, Chaney R, Brewer E et al (2003) Development of a technology for commercial phytoextraction of nickel: economic and technical considerations. Plant Soil 249:107–115

    Article  CAS  Google Scholar 

  • Lin H, Shi J, Wu B, Yang J, Chen Y, Zhao Y, Hu T (2010) Speciation and bio-chemical transformations of sulfur and copper in rice rhizosphere and bulk soil-XANES evidence of sulfur and copper associations. Plant Soil 313:1–17

    Google Scholar 

  • Luo C, Shen Z, Li X (2005) Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere 59:1–11

    Article  PubMed  CAS  Google Scholar 

  • McGrath SP, Lombi E, Gray CW, Caille N, Dunham SJ, Zhao FJ (2006) Field evaluation of Cd and Zn phytoextraction potential by the hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri. Environ Pollut 141:115–125

    Article  PubMed  CAS  Google Scholar 

  • Meagher RB, Heaton ACP (2005) Strategies for the engineered phytoremediation of toxic element pollution: mercury and arsenic. J Ind Microbiol Biotechnol 32:502–513

    Article  PubMed  CAS  Google Scholar 

  • Meagher RB, Rugh CL, Kandasamy MK, Gragson G, Wang NJ (2000) Engineering phytoremediation of mercury pollution in soil and water using bacterial genes. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. Lewis, Boca Raton, FL

    Google Scholar 

  • Millán R, Gamarra R, Schmid T, Sierra MJ, Quejido AJ, Sánchez DM, Cardona AI, Fernández M, Vera R (2006) Mercury content in vegetation and soils of the Almadén mining area (Spain). Sci Total Environ 368:79–87

    Article  PubMed  Google Scholar 

  • Moreno FN, Anderson CWN, Stewart RB, Robinson BH (2004) Phytoremediation of mercury-contaminated mine tailings by induced plant-mercury accumulation. Environ Practices 6:165–175

    Google Scholar 

  • Moreno FN, Anderson CWN, Stewart RB, Robinson BH, Ghomshei M, Meech JA (2005) Induced plant uptake and transport of mercury in the presence of sulphur-containing ligands and humic acid. New Phytol 166:445–454

    Article  PubMed  CAS  Google Scholar 

  • NRC National Research Council (2002) Bioavailability of contaminants in soils and sediments: processes, tools and applications. National Academies, Washington, DC

    Google Scholar 

  • Pedron F, Petruzzelli G, Barbafieri M, Tassi E (2009) Strategies to use phytoextraction in very acidic soil contaminated by heavy metals. Chemosphere 75:808–814

    Article  PubMed  CAS  Google Scholar 

  • Pedron F, Petruzzelli G, Tassi E, Brignocchi S, Barbafieri M (2010) Simultaneous Pb and As assisted-phytoextraction from a contaminated Industrial soil theme. In: Conference on ConSoil, Vienna, 1:8

    Google Scholar 

  • Pedron F, Petruzzelli G, Barbafieri M, Tassi E, Ambrosini P, Patata L (2011) Mercury mobilization in a contaminated industrial soil for phytoremediation. Commun Soil Sci Plant Anal 42:2767–2777

    CAS  Google Scholar 

  • Petruzzelli G, Pedron F (2006) “Bioavailability” at heavy metal contaminated sites: a tool to select remediation strategies. International Conference on Remediation of contaminated sites. Rome

    Google Scholar 

  • Petruzzelli G, Pezzarossa B (2003) Ionic strength influence on heavy metal sorption processes by soil. J Phys IV 107:1061–1064

    CAS  Google Scholar 

  • Petruzzelli G, Pedron F, Gorini F, Pezzarossa B, Tassi E, Barbafieri M (2011) Bioavailability to evaluate phytoextraction applicability. Water Air 42:12–17 (in Italian)

    Google Scholar 

  • Petruzzelli G, Pedron F, Barbafieri M, Tassi E, Gorini F, Rosellini I (2012) Enhanced bioavailable contaminant stripping: a case study of Hg contaminated soil. Chem Eng Trans 28:211–216

    Google Scholar 

  • Pezzarossa B, Petruzzelli G (2001) Selenium contamination in soil: sorption and desorption processes. In: Selim MH, Sparks DL (eds) Heavy metals release in soils. CRC, Boca Raton, FL

    Google Scholar 

  • Robinson BH, Schulin R, Nowack B, Roulier S, Menon M, Clothier B, Green S, Mills T (2006) Phytoremediation for the management of metal flux in contaminated sites. For Snow Landsc Res 80:221–234

    Google Scholar 

  • Santos FS, Hernandez-Allica J, Becerril JM, Amaral-Sobrinho N, MazurN GC (2006) Chelate induced phytoextraction of metal polluted soils with Brachiaria decumbens. Chemosphere 65:43–50

    Article  PubMed  CAS  Google Scholar 

  • Shelmerdine PA, Black CR, McGrath SP, Young SD (2009) Modeling phytoremediation by the hyperaccumulating fern, Pteris vittata, of soils historically contaminated with arsenic. Environ Pollut 157:1589–1596

    Article  PubMed  CAS  Google Scholar 

  • Sparks DL (1998) Methods of soil analysis, Part 3. Chemical methods, Soil Science Society of America Book Series. Soil Science Society of America, Madison, WI

    Google Scholar 

  • USEPA (2008a) Assessing relative bioavailability in soil at superfund sites. http://www.epa.gov/superfund/health/contaminants/bioavailability/index.htm

  • USEPA (2008b) Green remediation: incorporating sustainable environmental practice into remediation of contaminated sites. EPA542-R08-002:1–42

    Google Scholar 

  • Van Nevel L, Mertens J, Oorts K, Verheyen K (2007) Phytoextraction of metals from soils: how far from practice? Environ Pollut 150:34–40

    Article  PubMed  Google Scholar 

  • Vetterlein D, Szegedi K, Ackermann J, Mattusch J, Neue HU, Tanneberg H, Jahn R (2007) Competitive of phosphate and arsenate associated with geothite by root activity. J Environ Qual 36:1811–1820

    Article  PubMed  CAS  Google Scholar 

  • Wanga Q, Li Z, Cheng S, Wua Z (2010) Effects of humic acids on phytoextraction of Cu and Cd from sediment by Elodea nuttallii. Chemosphere 78:604–608

    Article  Google Scholar 

  • Wenzel WW (2009) Rhizosphere processes and management in plant assisted bioremediation (phytoremediation). Plant Soil 408:321–385

    Google Scholar 

  • Wu LH, Luo YM, Xing XR, Christie P (2004) EDTA-enhanced phytoremediation of heavy metal contaminated soil with Indian mustard and associated potential leaching risk. Agric Ecosyst Environ 102:307–318

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meri Barbafieri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Petruzzelli, G., Pedron, F., Rosellini, I., Barbafieri, M. (2013). Phytoremediation Towards the Future: Focus on Bioavailable Contaminants. In: Gupta, D. (eds) Plant-Based Remediation Processes. Soil Biology, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35564-6_13

Download citation

Publish with us

Policies and ethics