Advertisement

Transgenic Approaches to Enhance Phytoremediation of Heavy Metal-Polluted Soils

  • Pavel KotrbaEmail author
Chapter
Part of the Soil Biology book series (SOILBIOL, volume 35)

Abstract

Bioremediation using living plant species, referred to as phytoremediation, covers several different strategies, of which phytoremediation of metal-contaminated soils employs phytoextraction, rhizofiltration, phytostabilization, and phytovolatilization. Although a number of metal hyperaccumulating plant species have been identified, they have little significance in direct application in phytoextraction because of their slow growth, low biomass, and intense interaction with a specific habitat. Efforts are being directed to obtain better molecular insights into metallomics and physiology of hyperaccumulating plants, which highlights candidate genes suitable for phytoremediation. Transgenic approaches employed to promote phytoextraction of metals involved implementation of heterologous metal transporters, centrally important in metal uptake, compartmentalization and/or translocation to organs, improved production of intracellular metal-detoxifying ligands, and (over)production of eligible enzymes. Plants producing bacterial mercuric reductase and organomercurial lyase can convert toxic mercury to metallic Hg volatized from the leaf surface. The use of genetically modified plant symbionts is receiving attention only recently. Although substantial progress has been made, further efforts require interdisciplinary approach and more so, field trials are needed to assess the risk of genetic pollution and underlying economics. Here, we discuss the evidence supporting suitability and prospects of transgenic approaches in phytoremediation of heavy metal-contaminated soils.

Keywords

Transgenic Plant Aboveground Tissue Metal Translocation Mercuric Reductase Vacuolar Sequestration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aken BV, Correa PA, Schnoor JL (2010) Phytoremediation of polychlorinated biphenyls: new trends and promises. Environ Sci Technol 44:2767–2776PubMedGoogle Scholar
  2. Andres-Colas N, Sancenon V, Rodriguez-Navarro S, Mayo S, Thiele DJ, Ecker JR, Puig S, Penarrubia L (2006) The Arabidopsis heavy metal P-type ATPase HMA5 interacts with metallochaperones and functions in copper detoxification of roots. Plant J 45:225–236PubMedGoogle Scholar
  3. Andres-Colas N, Perea-Garcia A, Puig S, Peñarrubia L (2010) Deregulated copper transport affects Arabidopsis development especially in the absence of environmental cycles. Plant Physiol 153:170–184PubMedGoogle Scholar
  4. Arazi T, Sunkar R, Kaplan B, Fromm H (1999) A tobacco plasma membrane calmodulin-binding transporter confers Ni tolerance and Pb hypersensitivity in transgenic plants. Plant J 20: 171–182PubMedGoogle Scholar
  5. Argüello JM, Eren E, González-Guerrero M (2007) The structure and function of heavy metal transport P1B-ATPases. Biometals 20:233–248PubMedGoogle Scholar
  6. Arisi AC, Noctor G, Foyer CH, Jouanin L (1997) Modification of thiol contents in poplars (Populus tremula × P. alba) overexpressing enzymes involved in glutathione synthesis. Planta 203:362–372PubMedGoogle Scholar
  7. Arrivault S, Senger T, Krämer U (2006) The Arabidopsis metal tolerance protein AtMTP3 maintains metal homeostasis by mediating Zn exclusion from the shoot under Fe deficiency and Zn oversupply. Plant J 46:861–879PubMedGoogle Scholar
  8. Baker A, McGrath S, Reeves R, Smith J (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal polluted soils. In: Terry N, Bañuelos GS (eds) Phytoremediation of contaminated soil and water. CRC, Boca Raton, FLGoogle Scholar
  9. Balestrazzi A, Botti S, Zelasco S, Biondi S, Franchin C, Calligari P, Racchi M, Turchi A, Lingua G, Berta G, Carbonera D (2009) Expression of the PsMTA1 gene in white poplar engineered with the MAT system is associated with heavy metal tolerance and protection against 8-hydroxy-2′-deoxyguanosine mediated-DNA damage. Plant Cell Rep 28:1179–1192PubMedGoogle Scholar
  10. Bañuelos G, Terry N, Leduc DL, Pilon-Smits EAH, Mackey B (2005) Field trial of transgenic Indian mustard plants shows enhanced phytoremediation of selenium-contaminated sediment. Environ Sci Technol 39:1771–1777PubMedGoogle Scholar
  11. Bañuelos G, LeDuc DL, Pilon-Smits EAH, Terry N (2007) Transgenic Indian mustard overexpressing selenocysteine lyase or selenocysteine methyltransferase exhibit enhanced potential for selenium phytoremediation under field conditions. Environ Sci Technol 41:599–605PubMedGoogle Scholar
  12. Barroso C, Vega J, Gotor C (1995) A new member of the cytosolic O-acetylserine(thiol)lyase gene family in Arabidopsis thaliana. FEBS Lett 363:1–5PubMedGoogle Scholar
  13. Bellion M, Courbot M, Jacob C, Blaudez D, Chalot M (2006) Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microbiol Lett 254: 173–171PubMedGoogle Scholar
  14. Bennett LE, Burkhead JL, Hale KL, Terry N, Pilon M, Pilon-Smits EAH (2003) Analysis of transgenic Indian mustard plants for phytoremediation of metal-contaminated mine tailings. J Environ Qual 32:432–440PubMedGoogle Scholar
  15. Bennett PM, Livesey CT, Nathwani D, Reeves DS, Saunders JR, Wise R (2004) An assessment of the risks associated with the use of antibiotic resistance genes in genetically modified plants: report of the Working Party of the British Society for Antimicrobial Chemotherapy. J Antimicrob Chemother 53:418–431PubMedGoogle Scholar
  16. Bertinato J, Cheung L, Hoque R, Plouffe LJ (2010) Ctr1 transports silver into mammalian cells. J Trace Elem Med Bio 24:178–184Google Scholar
  17. Bhargava A, Carmona FF, Bhargava M, Srivastava S (2012) Approaches for enhanced phytoextraction of heavy metals. J Environ Manage 105:103–120PubMedGoogle Scholar
  18. Bhuiyan MSU, Min SR, Jeong WJ, Sultana S, Choi KS, Lee Y, Liu JR (2011a) Overexpression of AtATM3 in Brassica juncea confers enhanced heavy metal tolerance and accumulation. Plant Cell Tiss Org 107:69–77Google Scholar
  19. Bhuiyan MSU, Min SR, Jeong WJ, Sultana S, Choi KS, Song WY, Lee Y, Lim YP, Liu JR (2011b) Overexpression of a yeast cadmium factor 1 (YCF1) enhances heavy metal tolerance and accumulation in Brassica juncea. Plant Cell Tiss Organ Cult 105:85–91Google Scholar
  20. Bittsánszky A, Kömives T, Gullner G, Gyulai G, Kiss J, Heszky L, Radimsky L, Rennenberg H (2005) Ability of transgenic poplars with elevated glutathione content to tolerate Zn stress. Environ Int 31:251–254PubMedGoogle Scholar
  21. Bizily SP, Rugh CL, Meagher RB (2000) Phytodetoxification of hazardous organomercurials by genetically engineered plants. Nat Biotechnol 18:213–217PubMedGoogle Scholar
  22. Bizily SP, Kim T, Kandasamy MK, Meagher RB (2003) Subcellular targeting of methylmercury lyase enhances its specific activity for organic mercury detoxification in plants. Plant Physiol 131:463–471PubMedGoogle Scholar
  23. Bjelkova M, Gencurova V, Griga M (2011) Accumulation of cadmium by flax and linseed cultivars in field-simulated conditions: a potential for phytoremediation of Cd-contaminated soils. Ind Crop Prod 33:761–774Google Scholar
  24. Blaylock MJ, Salt DE, Dushenkov S, Zakharova O, Gussman C, Kapulnik Y, Ensley BD, Raskin I (1997) Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ Sci Technol 31:860–865Google Scholar
  25. Bojsen K, Donaldson I, Haldrup A, Joersbo M, Kreiberg J, Nielsen J, Okkels FT, Petersen SG (1998) Mannose or xylose based positive selection. US Patent 5,767,378Google Scholar
  26. Bovet L, Feller U, Martinoia E (2005) Possible involvement of plant ABC transporters in cadmium detoxification: a cDNA sub-microarray approach. Environ Int 31:263–267PubMedGoogle Scholar
  27. Boyd R (2007) The defense hypothesis of elemental hyperaccumulation: status, challenges and new directions. Plant Soil 293:153–176Google Scholar
  28. Brooks RR (1998) General introduction. In: Brooks RR (ed) Plants that hyperaccumulate heavy metals. CABI, WallingfordGoogle Scholar
  29. Burkhead JL, Reynolds KA, Abdel-Ghany SE, Cohu CM, Pilon M (2009) Copper homeostasis. New Phytol 182:799–816PubMedGoogle Scholar
  30. Callahan DL, Baker AJ, Kolev SD, Wedd AG (2006) Metal ion ligands in hyperaccumulating plants. J Biol Inorg Chem 11:2–12PubMedGoogle Scholar
  31. Callahan DL, Kolev SD, O’Hair RA, Salt DE, Baker AJ (2007) Relationships of nicotianamine and other amino acids with nickel, zinc and iron in Thlaspi hyperaccumulators. New Phytol 176: 836–848PubMedGoogle Scholar
  32. Chaney RL, Angle JS, McIntosh MS, Reeves RD, Li YM, Brewer EP, Chen K-Y, Rosenberg RJ, Perner H, Synkowski EC, Broadhurst CL, Wang S, Baker AJM (2005) Using hyperaccumulator plants to phytoextract soil Ni and Cd. Z Naturforsch 60:190–198Google Scholar
  33. Chaney RL, Angle JS, Broadhurst CL, Peters CA, Tappero RV, Sparks DL (2007) Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. J Environ Qual 36:1429–1443PubMedGoogle Scholar
  34. Che D, Meagher RB, Heaton ACP, Lima A, Rugh CL, Merkle SA (2003) Expression of mercuric ion reductase in eastern cottonwood (Populus deltoides) confers mercuric ion reduction and resistance. Plant Biotechnol J 1:311–319PubMedGoogle Scholar
  35. Chen Y, Li XD, Shen ZG (2004) Leaching and uptake of heavy metals by ten different species of plants during an EDTA-assisted phytoextraction process. Chemosphere 57:187–196PubMedGoogle Scholar
  36. Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719PubMedGoogle Scholar
  37. Clemens S, Simm C (2003) Schizosaccharomyces pombe as a model for metal homeostasis in plant cells: the phytochelatin-dependent pathway is the main cadmium detoxification mechanism. New Phytol 159:323–330Google Scholar
  38. Clemens S, Palmgren M, Krämer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–315PubMedGoogle Scholar
  39. Couselo JL, Navarro-Avñó J, Ballester A (2010) Expression of the phytochelatin synthase TaPCS1 in transgenic aspen, insight into the problems and qualities in phytoremediation of Pb. Int J Phytoremediation 12:358–370PubMedGoogle Scholar
  40. Coyle P, Philcox JC, Carey LC, Rofe AM (2002) Metallothionein: the multipurpose protein. Cell Mol Life Sci 59:627–647PubMedGoogle Scholar
  41. Cunningham SC, Berti WR, Huang JW (1995) Phytoremediation of contaminated soils. Trends Biotechnol 13:393–397Google Scholar
  42. Curie C, Alonso JM, Le Jean M, Ecker JR, Briat JF (2000) Involvement of Nramp1 from Arabidopsis thaliana in iron transport. Biochem J 347:7497–7455Google Scholar
  43. Czakó M, Feng X, He Y, Liang D, Márton L (2006) Transgenic Spartina alterniflora for phytoremediation. Environ Geochem Health 28:103–110PubMedGoogle Scholar
  44. Davison J (2005) Risk mitigation of genetically modified bacteria and plants designed for bioremediation. J Ind Microbiol Biotechnol 32:639–650PubMedGoogle Scholar
  45. de Borne FD, Elmayan T, de Roton C, de Hys L, Tepfer M (1998) Cadmium partitioning in transgenic tobacco plants expressing mammalian metallothionein gene. Mol Breed 4:83–90Google Scholar
  46. Dixit P, Singh S, Vancheeswaran R, Patnala K, Eapen S (2010) Expression of a Neurospora crassa zinc transporter gene in transgenic Nicotiana tabacum enhances plant zinc accumulation without co-transport of cadmium. Plant Cell Environ 33:1697–1707PubMedGoogle Scholar
  47. Domínguez-Solís JR, López-Martín MC, Ager FJ, Ynsa MD, Romero LC, Gotor C (2004) Increased cysteine availability is essential for cadmium tolerance and accumulation in Arabidopsis thaliana. Plant Biotechnol J 2:469–476PubMedGoogle Scholar
  48. Doty SL (2008) Enhancing phytoremediation through the use of transgenics and endophytes. New Phytol 179:318–333PubMedGoogle Scholar
  49. Evans K, Gatehouse J, Lindsay W, Shi J, Tommey A, Robinson N (1992) Expression of the pea metallothionein-like gene PsMTa in Escherichia coli and Arabidopsis thaliana and analysis of trace metal ion accumulation: implications for PsMTa function. Plant Mol Biol 20:1019–1028PubMedGoogle Scholar
  50. Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875PubMedGoogle Scholar
  51. Freeman JL, Salt DE (2007) The metal tolerance profile of Thlaspi goesingense is mimicked in Arabidopsis thaliana heterologously expressing serine acetyl-transferase. BMC Plant Biol 7:63PubMedGoogle Scholar
  52. Freeman JL, Garcia D, Kim D, Hopf A, Salt DE (2005) Constitutively elevated salicylic acid signals glutathione-mediated nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Physiol 137:1082–1091PubMedGoogle Scholar
  53. Freisinger E (2008) Plant MTs-long neglected members of the metallothionein superfamily. Dalton Trans 47:6663–6675PubMedGoogle Scholar
  54. Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bio-weathering and bioremediation. Mycol Res 111:3–49PubMedGoogle Scholar
  55. Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643PubMedGoogle Scholar
  56. Gendre D, Czernic P, Conéjéro G, Pianelli K, Briat J-F, Lebrun M, Mari S (2007) TcYSL3, a member of the YSL gene family from the hyperaccumulator Thlaspi caerulescens, encodes a nicotianamine-Ni/Fe transporter. Plant J 49:1–15PubMedGoogle Scholar
  57. Gilbertson L (2003) Cre-lox recombination: Cre-ative tools for plant biotechnology. Trends Biotechnol 21:550–555PubMedGoogle Scholar
  58. Gisbert C, Ros R, De Haro A, Walker DJ, Pilar Bernal M, Serrano R, Navarro-Aviñó J (2003) A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem Biophys Res Commun 303:440–445PubMedGoogle Scholar
  59. Guo J, Dai X, Xu W, Ma M (2008a) Overexpressing gsh1 and AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere 72:1020–1026PubMedGoogle Scholar
  60. Guo WJ, Meetam M, Goldsbrough PB (2008b) Examining the specific contributions of individual Arabidopsis metallothioneins to copper distribution and metal tolerance. Plant Physiol 146: 1697–706PubMedGoogle Scholar
  61. Hammond JP, Bowen HC, White PJ, Mills V, Pyke KA, Baker AJ, Whiting SN, May ST, Broadley MR (2006) A comparison of the Thlaspi caerulescens and Thlaspi arvense shoot transcriptomes. New Phytol 170:239–260PubMedGoogle Scholar
  62. Hanikenne M, Talke IN, Haydon MJ, Lanz C, Nolte A, Motte P, Kroymann J, Weigel D, Krämer U (2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453:391–395PubMedGoogle Scholar
  63. Haque S, Zeyaullah M, Nabi G, Srivastava PS, Ali A (2010) Transgenic tobacco plant expressing environmental E. coli merA gene for enhanced volatilization of ionic mercury. J Microbiol Biotechnol 20:917–924PubMedGoogle Scholar
  64. Hasegawa I, Terada E, Sunairi M, Wakita H, Shinmachi F, Noguchi A, Nakajima M, Yazaki J (1997) Genetic improvement of heavy metal tolerance in plants by transfer of the yeast metallothionein gene (CUP1). Plant Soil 196:277–281Google Scholar
  65. Hassinen VH, Tervahauta AI, Halimaa P, Plessl S, Peräniemi H, Aarts MGM, Servomaa K, Kärenlampi SO (2007) Isolation of Zn-responsive genes from two accessions of the hyperaccumulator plant Thlaspi caerulescens. Planta 225:977–989PubMedGoogle Scholar
  66. Haydon MJ, Cobbett CS (2007) Transporters of ligands for essential metal ions in plants. New Phytol 174:499–506PubMedGoogle Scholar
  67. He YK, Sun JG, Feng XZ, Czakó M, Márton L (2001) Differential mercury volatilization by tobacco organs expressing a modified bacterial merA gene. Cell Res 11:231–236PubMedGoogle Scholar
  68. Heaton ACP, Rugh CL, Kim T, Wang NJ, Meagher RB (2003) Toward detoxifying mercury-polluted aquatic sediments with rice genetically engineered for mercury resistance. Environ Toxicol Chem 22:2940–2947PubMedGoogle Scholar
  69. Hirschi KD, Korenkov VD, Wilganowski NL, Wagner GJ (2000) Expression of Arabidopsis CAX2 in tobacco. Altered metal accumulation and increased manganese tolerance. Plant Physiol 124: 125–133PubMedGoogle Scholar
  70. Hsieh J, Chen C, Chiu M, Chein M, Chang J, Endo G, Huang GG (2009) Expressing a bacterial mercuric ion binding protein in plant for phytoremediation of heavy metals. J Hazard Mater 161:920–925PubMedGoogle Scholar
  71. Huang JW, Cunningham SD (1996) Lead phytoextraction: species variation in lead uptake and translocation. New Phytol 134:75–84Google Scholar
  72. Ike A, Sriprang R, Ono H, Murooka Y, Yamashita M (2007) Bioremediation of cadmium contaminated soil using symbiosis between leguminous plant and recombinant rhizobia with the MTL4 and the PCS genes. Chemosphere 66:1670–1676PubMedGoogle Scholar
  73. Ingle RA, Mugford ST, Rees JD, Campbell MM, Smith JAC (2005) Constitutively high expression of the histidine biosynthetic pathway contributes to nickel tolerance in hyperaccumulator plants. Plant Cell 17:2089–2106PubMedGoogle Scholar
  74. Jack E, Hakvoort HWJ, Reumer A, Verkleij JAC, Schat H, Ernst WHO (2007) Real-time PCR analysis of metallothionein-2b expression in metallicolous and nonmetallicolous populations of Silene vulgaris (Moench) Garcke. Environ Exp Bot 59:84–91Google Scholar
  75. Jaffre T, Brooks RR, Lee J, Reeves RD (1976) Sebertia acuminata, a hyperaccumulator of nickel from New Caledonia. Science 193:579–580PubMedGoogle Scholar
  76. Johnson AA, Kyriacou B, Callahan DL, Carruthers L, Stangoulis J, Lombi E, Tester M (2011) Constitutive overexpression of the OsNAS gene family reveals single-gene strategies for effective iron- and zinc-biofortification of rice endosperm. PLoS One 6:e24476PubMedGoogle Scholar
  77. Kabata-Pendias A (2011) Trace elements in soils and plants. CRC, Boca Raton, FLGoogle Scholar
  78. Kawashima CG, Noji M, Nakamura M, Ogra Y, Suzuki KT, Saito K (2004) Heavy metal tolerance of transgenic tobacco plants over-expressing cysteine synthase. Biotechnol Lett 26:153–157PubMedGoogle Scholar
  79. Kempe K, Rubtsova M, Berger C, Kumlehn J, Schollmeier C, Gils M (2010) Transgene excision from wheat chromosomes by phage phiC31 integrase. Plant Mol Biol 72:673–687PubMedGoogle Scholar
  80. Kim D, Gustin JL, Lahner B, Persans MW, Baek D, Yun DJ, Salt DE (2004) The plant CDF family member TgMTP1 from the Ni/Zn hyperaccumulator Thlaspi goesingense acts to enhance efflux of Zn at the plasma membrane when expressed in Saccharomyces cerevisiae. Plant J 39:237–251PubMedGoogle Scholar
  81. Kim S, Takahashi M, Higuchi K, Tsunoda K, Nakanishi H, Yoshimura E, Mori S, Nishizawa NK (2005) Increased nicotianamine biosynthesis confers enhanced tolerance of high levels of metals, in particular nickel, to plants. Plant Cell Physiol 46:1809–1818PubMedGoogle Scholar
  82. Kim D, Bovet L, Kushnir S, Noh EW, Martinoia E, Lee Y (2006) AtATM3 is involved in heavy metal resistance in Arabidopsis. Plant Physiol 140:922–932PubMedGoogle Scholar
  83. Kiyono M, Miyahara K, Sone Y, Pan-Hou H, Uraguchi S, Nakamura R, Sakabe K (2010) Engineering expression of the heavy metal transporter MerC in Saccharomyces cerevisiae for increased cadmium accumulation. Appl Microbiol Biotechnol 86:753–759PubMedGoogle Scholar
  84. Kiyono M, Sone Y, Miyahara K, Oka Y, Nakamura M, Nakamura R, Sato MH, Pan-Hou H, Sakabe K, Inoue K (2011) Genetic expression of bacterial merC fused with plant SNARE in Saccharomyces cerevisiae increased mercury accumulation. Biochem Eng J 56:137–141Google Scholar
  85. Kiyono M, Oka Y, Sone Y, Tanaka M, Nakamura R, Sato MH, Pan-Hou H, Sakabe K, Inoue K (2012) Expression of the bacterial heavy metal transporter MerC fused with a plant SNARE, SYP121, in Arabidopsis thaliana increases cadmium accumulation and tolerance. Planta 235:841–850PubMedGoogle Scholar
  86. Kok EJ, Keijer J, Kleter GA, Kuiper HA (2008) Comparative safety assessment of plant-derived foods. Regul Toxicol Pharmacol 50:98–113PubMedGoogle Scholar
  87. Koprivova A, Kopriva S, Jäger D, Will B, Jouanin L, Rennenberg H (2002) Evaluation of transgenic poplars over-expressing enzymes of glutathione synthesis for phytoremediation of cadmium. Plant Biol 4:664–670Google Scholar
  88. Korenkov V, Hirschi K, Crutchfield JD, Wagner GJ (2007a) Enhancing tonoplast Cd/H antiport activity increases Cd, Zn, and Mn tolerance, and impacts root/shoot Cd partitioning in Nicotiana tabacum L. Planta 226:1379–1387PubMedGoogle Scholar
  89. Korenkov V, Park S, Cheng N, Sreevidya C, Lachmansingh J, Morris J, Hirschi K, Wagner GJ (2007b) Enhanced Cd -selective root-tonoplast-transport in tobaccos expressing Arabidopsis cation exchangers. Planta 225:403–411Google Scholar
  90. Kotrba P, Najmanova J, Macek T, Ruml T, Mackova M (2009) Genetically modified plants in phytoremediation of heavy metal and metalloid soil and sediment pollution. Biotechnol Adv 27:799–810PubMedGoogle Scholar
  91. Krämer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517–34PubMedGoogle Scholar
  92. Krämer U, Talke I, Hanikenne M (2007) Transition metal transport. FEBS Lett 581:2263–2272Google Scholar
  93. Křížková S, Diopan V, Baloun J, Šupálková V, Shestisvka V, Kotrba P, Mackova M, Macek T, Kizek R (2007) Electrochemical determination of metallothionein in transgenic tobacco plants. In: Book of proceedings of 4th symposium on biosorption and bioremediation, ICT Prague, PragueGoogle Scholar
  94. Kuvshinov V, Koivu K, Kanerva A, Pehu E (2001) Molecular control of transgene escape from genetically modified plants. Plant Sci 160:517–522PubMedGoogle Scholar
  95. Kwit C, Moon HS, Warwick SI, Stewart CN Jr (2011) Transgene introgression in crop relatives: molecular evidence and mitigation strategies. Trends Biotechnol 29:284–293PubMedGoogle Scholar
  96. Lang M, Hao M, Fan Q, Wang W, Mo S, Zhao W, Zhou J (2011) Functional characterization of BjCET3 and BjCET4, two new cation-efflux transporters from Brassica juncea L. J Exp Bot 62:4467–4480PubMedGoogle Scholar
  97. Le Cooper EM, Sims JT, Cunningham SD, Huang JW, Berti WR (1999) Chelate-assisted phytoextraction of lead from contaminated soils. J Environ Qual 28:1709–1719Google Scholar
  98. Lee S, Moon JS, Ko T, Petros D, Goldsbrough PB, Korban SS (2003) Overexpression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress. Plant Physiol 131:656–663PubMedGoogle Scholar
  99. Lee S, Persson DP, Hansen TH, Husted S, Schjoerring JK, Kim YS, Jeon US, Kim YK, Kakei Y, Masuda H, Nishizawa NK, An G (2011) Bio-available zinc in rice seeds is increased by activation tagging of nicotianamine synthase. Plant Biotechnol J 9:865–873PubMedGoogle Scholar
  100. Leustek T (1996) Molecular genetics of sulfate assimilation in plants. Physiol Planta 97:411–419Google Scholar
  101. Li ZS, Lu YP, Zhen RG, Szczypka M, Thiele DJ, Rea PA (1997) A new pathway for vacuolar cadmium sequestration in Saccharomyces cerevisiae: YCF1-catalyzed transport of bis(glutathionato)cadmium. Proc Natl Acad Sci USA 94:42–47PubMedGoogle Scholar
  102. Li Y, Dhankher OP, Carreira L, Lee D, Chen A, Schroeder JI, Balish RS, Meagher RB (2004) Overexpression of phytochelatin synthase in Arabidopsis leads to enhanced arsenic tolerance and cadmium hypersensitivity. Plant Cell Physiol 45:1787–1797PubMedGoogle Scholar
  103. Li Z, Xing A, Moon BP, McCardell RP, Mills K, Falco SC (2009) Site-specific integration of transgenes in soybean via recombinase-mediated DNA cassette exchange. Plant Physiol 151: 1087–1095PubMedGoogle Scholar
  104. Lin Z, Schemenauer R, Cervinka V, Zayed A, Lee A, Terry N (2000) Selenium volatilization from a soil-plant system for the remediation of contaminated water and soil in the San Joaquin valley. J Environ Qual 29:1048–1056Google Scholar
  105. Lin C, Fang J, Xu X, Zhao T, Cheng J, Tu J, Ye G, Shen Z (2008) A built-in strategy for containment of transgenic plants: creation of selectively terminable transgenic rice. PLoS One 3:e1818PubMedGoogle Scholar
  106. Lin YF, Liang HM, Yang SY, Boch A, Clemens S, Chen CC, Wu JF, Huang JL, Yeh KC (2009) Arabidopsis IRT3 is a zinc-regulated and plasma membrane localized zinc/iron transporter. New Phytol 182:392–404PubMedGoogle Scholar
  107. Linacre NA, Whiting SN, Baker AJM, Angle S, Ades PK (2003) Transgenics and phytoremediation: the need for an integrated risk assessment, management, and communication strategy. Int J Phytoremediation 3:181–185Google Scholar
  108. Lindblom SD, Abdel-Ghany S, Hanson BR, Hwang S, Terry N, Pilon-Smits EA (2006) Constitutive expression of a high-affinity sulfate transporter in Indian mustard affects metal tolerance and accumulation. J Environ Qual 35:726–733PubMedGoogle Scholar
  109. Lodewyckx C, Taghavi S, Mergeay M, Vangronsveld J, Clijsters H, van der Lelie D (2001) The effect of recombinant heavy metal resistant endophytic bacteria in heavy metal uptake by their host plant. Int J Phytoremediation 3:181–185Google Scholar
  110. Lu L, Tian S, Yang X, Wang X, Brown P, Li T, He Z (2008) Enhanced root-to-shoot translocation of cadmium in the hyperaccumulating ecotype of Sedum alfredii. J Exp Bot 59:3203–3213PubMedGoogle Scholar
  111. Lyyra S, Meagher RB, Kim T, Heaton A, Montello P, Balish RS, Merkle SA (2007) Coupling two mercury resistance genes in eastern cottonwood enhances the processing of organomercury. Plant Biotechnol J 5:254–262PubMedGoogle Scholar
  112. Macek T, Macková M, Pavlíková D, Száková J, Truksa M, Cundy A, Kotrba P, Yancey N, Scouten WH (2002) Accumulation of cadmium by transgenic tobacco. Acta Biotechnol 22: 101–106Google Scholar
  113. Macek T, Kotrba P, Svatos A, Novakova M, Demnerova K, Mackova M (2008) Novel roles for genetically modified plants in environmental protection. Trends Biotechnol 26:146–152PubMedGoogle Scholar
  114. Mari S, Gendre D, Pianelli K, Ouerdane L, Lobinski R, Briat J-F, Lebrun M, Czernic P (2006) Root-to-shoot long-distance circulation of nicotianamine and nicotianamine–nickel chelates in the metal hyperaccumulator Thlaspi caerulescens. J Exp Bot 57:4111–4122PubMedGoogle Scholar
  115. Martínez M, Bernal P, Almela C, Vélez D, García-Agustín P, Serrano R, Navarro-Aviñó J (2006) An engineered plant that accumulates higher levels of heavy metals than Thlaspi caerulescens, with yields of 100 times more biomass in mine soils. Chemosphere 64:478–485PubMedGoogle Scholar
  116. Mendoza-Cózatl DG, Butko E, Springer F, Torpey JW, Komives EA, Kehr J, Schroeder JI (2008) Identification of high levels of phytochelatins, glutathione and cadmium in the phloem sap of Brassica napus. A role for thiol-peptides in the long-distance transport of cadmium and the effect of cadmium on iron translocation. Plant J 54:249–259PubMedGoogle Scholar
  117. Mendoza-Cózatl DG, Zhai Z, Jobe TO, Akmakjian GZ, Song WY, Limbo O, Russell MR, Kozlovskyy VI, Martinoia E, Vatamaniuk OK, Russell P, Schroeder JI (2010) Tonoplast-localized Abc2 transporter mediates phytochelatin accumulation in vacuoles and confers cadmium tolerance. J Biol Chem 285:40416–40426PubMedGoogle Scholar
  118. Meyer AJ, Fricker MD (2002) Control of demand-driven biosynthesis of glutathione in green Arabidopsis suspension culture cells. Plant Physiol 130:1927–1937PubMedGoogle Scholar
  119. Meyer CL, Verbruggen N (2012) The use of the model species Arabidopsis halleri towards phytoextraction of cadmium polluted soils. Nat Biotechnol. doi: 10.1016/j.nbt.2012.07.009
  120. Migeon A, Blaudez D, Wilkins O, Montanini B, Campbell MM, Richaud P, Thomine S, Chalot M (2010) Genome-wide analysis of plant metal transporters, with an emphasis on poplar. Cell Mol Life Sci 67:3763–3784PubMedGoogle Scholar
  121. Mills RF, Krijger GC, Baccarini PJ, Hall JL, Williams LE (2003) Functional expression of AtHMA4, a P-1B-type ATPase of the Zn/Co/Cd/Pb subclass. Plant J 35:164–176PubMedGoogle Scholar
  122. Mills RF, Francini A, da Rocha PSCF, Baccarini PJ, Aylett M, Krijger GC, Williams LE (2005) The plant P-1B-type ATPase AtHMA4 transports Zn and Cd and plays a role in detoxification of transition metals supplied at elevated levels. FEBS Lett 579:783–791PubMedGoogle Scholar
  123. Milner MJ, Craft E, Yamaji N, Koyama E, Ma JF, Kochian LV (2012) Characterization of the high affinity Zn transporter from Noccaea caerulescens, NcZNT1, and dissection of its promoter for its role in Zn uptake and hyperaccumulation. New Phytol 195:113–123PubMedGoogle Scholar
  124. Miransari M (2011) Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol Adv 29:645–653PubMedGoogle Scholar
  125. Misra S, Gedamu L (1989) Heavy metal tolerant transgenic Brassica napus L. and Nicotiana tabaccum L. plants. Theor Appl Genet 78:161–168Google Scholar
  126. Montanini B, Blaudez D, Jeandroz S, Sanders D, Chalot M (2007) Phylogenetic and functional analysis of the Cation Diffusion Facilitator (CDF) family: improved signature and prediction of substrate specificity. BMC Genomics 8:107PubMedGoogle Scholar
  127. Moreno FN, Anderson CWN, Stewart RB, Robinson BH (2005) Mercury volatilization and phytoextraction from base-metal mine tailings. Environ Pollut 136:341–352PubMedGoogle Scholar
  128. Murphy A, Taiz L (1995) Comparison of metallothionein gene expression and nonprotein thiols in ten Arabidopsis ecotypes: correlation with copper tolerance. Plant Physiol 109:945–954PubMedGoogle Scholar
  129. Nagata T, Ishikawa C, Kiyono M, Pan-Hou H (2006a) Accumulation of mercury in transgenic tobacco expressing bacterial polyphosphate. Biol Pharm Bull 29:2350–2353PubMedGoogle Scholar
  130. Nagata T, Kiyono M, Pan-Hou H (2006b) Engineering expression of bacterial polyphosphate kinase in tobacco for mercury remediation. Appl Microbiol Biotechnol 72:777–782PubMedGoogle Scholar
  131. Nagata T, Nakamura A, Akizawa T, Pan-Hou H (2009) Genetic engineering of transgenic tobacco for enhanced uptake and bioaccumulation of mercury. Biol Pharm Bull 32:1491–1495PubMedGoogle Scholar
  132. Nagata T, Morita H, Akizawa T, Pan-Hou H (2010) Development of a transgenic tobacco plant for phytoremediation of methylmercury pollution. Appl Microbiol Biotechnol 87:781–786PubMedGoogle Scholar
  133. Nair A, Juwarkar AA, Singh SK (2007) Production and characterization of siderophores and its application in arsenic removal from contaminated soil. Water Air Soil Pollut 180:199–212Google Scholar
  134. Nair S, Joshi-Saha A, Singh S, Ramachandran V, Singh S, Thorat V, Kaushik CP, Eapen S, D’Souza SF (2012) Evaluation of transgenic tobacco plants expressing a bacterial Co-Ni transporter for acquisition of cobalt. J Biotechnol. doi: 10.1016/j.jbiotec.2012.07.191
  135. Najmanova J, Neumannova E, Leonhardt T, Zitka O, Kizek R, Macek T, Macková M, Kotrba P (2012) Cadmium-induced production of phytochelatins and speciation of intracellular cadmium in organs of Linum usitatissimum seedlings. Ind Crop Prod 36:536–542Google Scholar
  136. Noret N, Meerts P, Vanhaelen M, Dos Santos A, Escarré J (2007) Do metal-rich plants deter herbivores? A field test of the defence hypothesis. Oecologia 152:92–100PubMedGoogle Scholar
  137. Ó Lochlainn S, Bowen HC, Fray RG, Hammond JP, King GJ, White PJ, Graham NS, Broadley MR (2011) Tandem quadruplication of HMA4 in the zinc (Zn) and cadmium (Cd) hyperaccumulator Noccaea caerulescens. PLoS One 6:e17814Google Scholar
  138. Pan A, Yang M, Tie F, Li L, Chen Z, Ru B (1994) Expression of mouse metallothionein-I gene confers cadmium resistance in transgenic tobacco plants. Plant Mol Biol 24:341–351PubMedGoogle Scholar
  139. Pavlíková D, Macek T, MacKová M, Száková J, Balík J (2004) Cadmium tolerance and accumulation in transgenic tobacco plants with a yeast metallothionein combined with a polyhistidine tail. Int Biodeter Biodegrad 54:233–237Google Scholar
  140. Pence NS, Larsen PB, Ebbs SD, Letham DBL, Lasat MM, Garvin DF, Eide D, Kochian LV (2000) The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proc Natl Acad Sci USA 97:4956–4960PubMedGoogle Scholar
  141. Persans MW, Nieman K, Salt DE (2001) Functional activity and role of cation-efflux family members in Ni hyperaccumulation in Thlaspi goesingense. Plant Biol 98:9995–10000Google Scholar
  142. Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39PubMedGoogle Scholar
  143. Pilon-Smits H, Mel Lytle C, Zhu T, Bravo CY, Leustek T, Terry N (1999) Overexpression of ATP sulfurylase in Indian mustard leads to increased selenate uptake, reduction, and tolerance. Plant Physiol 119:123–132PubMedGoogle Scholar
  144. Pilon-Smits EAH, Zhu YL, Sears T, Terry N (2000) Overexpression of glutathione reductase in Brassica juncea: effects on cadmium accumulation and tolerance. Physiol Planta 110:455–460Google Scholar
  145. Puig S, Thiele DJ (2002) Molecular mechanisms of copper uptake and distribution. Curr Opin Chem Biol 6:171–180PubMedGoogle Scholar
  146. Puig S, Andres-Colas N, Garcia-Molina A, Penarrubia L (2007) Copper and iron homeostasis in Arabidopsis: responses to metal deficiencies, interactions and biotechnological applications. Plant Cell Environ 30:271–290PubMedGoogle Scholar
  147. Rajkumar M, Sandhya S, Prasad MN, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv. doi: 0.1016/j.biotechadv.2012.04.011
  148. Reeves RD (2006) Hyperaccumulation of trace elements by plants. In: Morel JL, Echevarria G, Goncharova N (eds) Phytoremediation of metal contaminated soils, IV. Earth and environmental sciences, vol 68, NATO Science Series. Springer, BerlinGoogle Scholar
  149. Reisinger S, Schiavon M, Terry N, Pilon-Smits EA (2008) Heavy metal tolerance and accumulation in Indian mustard (Brassica juncea L.) expressing bacterial γ-glutamylcysteine synthetase or glutathione synthetase. Int J Phytoremediation 10:440–454PubMedGoogle Scholar
  150. Richau KH, Kozhevnikova AD, Seregin IV, Vooijs R, Koevoets PL, Smith JA, Ivanov VB, Schat H (2009) Chelation by histidine inhibits the vacuolar sequestration of nickel in roots of the hyperaccumulator Thlaspi caerulescens. New Phytol 183:106–116PubMedGoogle Scholar
  151. Roosens NH, Bernard C, Leplae R, Verbruggen N (2004) Evidence for copper homeostasis function of metallothionein (MT3) in the hyperaccumulator Thlaspi caerulescens. FEBS Lett 577(1–2):9–16PubMedGoogle Scholar
  152. Roosens NH, Leplae R, Bernard C, Verbruggen N (2005) Variations in plant metallothioneins: the heavy metal hyperaccumulator Thlaspi caerulescens as a study case. Planta 222:716–729PubMedGoogle Scholar
  153. Rugh CL, Senecoff JF, Meagher RB, Merkle SA (1998) Development of transgenic yellow poplar for mercury phytoremediation. Nat Biotechnol 16:925–928PubMedGoogle Scholar
  154. Ruiz ON, Hussein HS, Terry N, Daniell H (2003) Phytoremediation of organomercurial compounds via chloroplast genetic engineering. Plant Physiol 132:1344–1352PubMedGoogle Scholar
  155. Ruiz ON, Alvarez D, Torres C, Roman L, Daniell H (2011) Metallothionein expression in chloroplasts enhances mercury accumulation and phytoremediation capability. Plant Biotechnol J 9:609–6017PubMedGoogle Scholar
  156. Salt DE, Prince RC, Baker AJM, Raskin I, Pickering IJ (1999) Zinc ligands in the metal hyperaccumulator Thlaspi caerulescens as determined using X-ray absorption spectroscopy. Environ Sci Technol 33:713–717Google Scholar
  157. Sancenon V, Puig S, Mateu-Andres I, Dorcey E, Thiele DJ, Penarrubia L (2004) The Arabidopsis copper transporter COPT1 functions in root elongation and pollen development. J Biol Chem 279:15348–15355PubMedGoogle Scholar
  158. Sarwar N, Saifullah, Malhi SS, Zia MH, Naeem A, Bibi S, Farid G (2010) Role of mineral nutrition in minimizing cadmium accumulation by plants. Sci Food Agric 90:925–937Google Scholar
  159. Sasaki Y, Hayakawa T, Inoue C, Miyazaki A, Silver S, Kusano T (2006) Generation of mercury-hyperaccumulating plants through transgenic expression of the bacterial mercury membrane transport protein MerC. Transgenic Res 15:615–625PubMedGoogle Scholar
  160. Schat H, Llugany M, Vooijs R, Hartley-Whitaker J, Bleeker PM (2002) The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and nonhyperaccumulator metallophytes. J Exp Bot 53:2381–2392PubMedGoogle Scholar
  161. Schuler M, Bauer P (2011) Heavy metals need assistance: the contribution of nicotianamine to metal circulation throughout the plant and the Arabidopsis NAS Gene Family. Front Plant Sci 2:69PubMedGoogle Scholar
  162. Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365PubMedGoogle Scholar
  163. Sekhar K, Priyanka B, Reddy VD, Rao KV (2011) Metallothionein 1 (CcMT1) of pigeonpea (Cajanus cajan L.) confers enhanced tolerance to copper and cadmium in Escherichia coli and Arabidopsis thaliana. Environ Exp Bot 72:131–139Google Scholar
  164. Shigaki T, Barkla BJ, Miranda-Vergara MC, Zhao J, Pantoja O, Hirschi KD (2005) Identification of a crucial histidine involved in metal transport activity in the Arabidopsis cation/H+ exchanger CAX1. J Biol Chem 280:30136–30142PubMedGoogle Scholar
  165. Shin LJ, Lo JC, Teh KC (2012) Copper chaperone antioxidant protein 1 is essential for copper homeostasis. Plant Physiol. doi: 10.1104/pp. 112.195974
  166. Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE, Mitchell JC, Arnold NL, Gopalan S, Meng X, Choi VM, Rock JM, Wu YY, Katibah GE, Zhifang G, McCaskill D, Simpson MA, Blakeslee B, Greenwalt SA, Butler HJ, Hinkley SJ, Zhang L, Rebar EJ, Gregory PD, Urnov FD (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459:437–441PubMedGoogle Scholar
  167. Silver S, Phung L (2005) A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. J Ind Microbiol Biotechnol 32:587–605PubMedGoogle Scholar
  168. Singh OV, Ghai S, Paul D, Jain RK (2006) Genetically modified crops: success, safety assessment, and public concern. Appl Microbiol Biotechnol 71:598–607PubMedGoogle Scholar
  169. Song WY, Sohn EJ, Martinoia E, Lee YJ, Yang YY, Jasinski M, Forestier C, Hwang I, Lee Y (2003) Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat Biotechnol 21:914–919PubMedGoogle Scholar
  170. Sun Q, Ye ZH, Wang XR, Wong MH (2007) Cadmium hyperaccumulation leads to an increase of glutathione rather than phytochelatins in the cadmium hyperaccumulator Sedum alfredii. J Plant Physiol 164:1489–1498PubMedGoogle Scholar
  171. Sunkar R, Kaplan B, Bouché N, Arazi T, Dolev D, Talke IN, Maathuis FJ, Sanders D, Bouchez D, Fromm H (2000) Expression of a truncated tobacco NtCBP4 channel in transgenic plants and disruption of the homologous Arabidopsis CNGC1 gene confer Pb tolerance. Plant J 24: 533–542PubMedGoogle Scholar
  172. Talke I, Hanikenne M, Krämer U (2006) Zinc dependent global transcriptional control, transcriptional de-regulation and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri. Plant Physiol 142:148–167PubMedGoogle Scholar
  173. Thomas JC, Davies EC, Malick FK, Endreszl C, Williams CR, Abbas M, Petrella S, Swisher K, Perron M, Edwards R, Osenkowski P, Urbanczyk N, Wiesend WN, Murray KS (2003) Yeast metallothionein in transgenic tobacco promotes copper uptake from contaminated soils. Biotechnol Prog 19:273–280PubMedGoogle Scholar
  174. Thomine S, Wang R, Ward JM, Crawford NM, Schroeder JI (2000) Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc Natl Acad Sci USA 97:4991–4996PubMedGoogle Scholar
  175. Thomson JG, Yau YY, Blanvillain R, Nunes WM, Chiniquy D, Thilmony R, Ow DW (2009) ParA resolvase catalyzes site-specific excision of DNA from the Arabidopsis genome. Transgenic Res 18:237–248PubMedGoogle Scholar
  176. Turchi A, Tamantini I, Camussi AM, Racchi ML (2012) Expression of a metallothionein A1 gene of Pisum sativum in white poplar enhances tolerance and accumulation of zinc and copper. Plant Sci 183:50–56PubMedGoogle Scholar
  177. Uemura T, Ueda T, Ohniwa RL, Nakano A, Takeyasu K, Sato MH (2004) Systematic analysis of SNARE molecules in Arabidopsis: dissection of the post-Golgi network in plant cells. Cell Struct Funct 29:49–65PubMedGoogle Scholar
  178. Ueno D, Iwashita T, Zhao FJ, Ma JF (2008) Characterization of Cd translocation and identification of the Cd form in xylem sap of the Cd-hyperaccumulator Arabidopsis halleri. Plant Cell Physiol 49:540–548PubMedGoogle Scholar
  179. van de Mortel JE, Villanueva LA, Schat H, Kwekkeboom J, Coughlan S, Moerland PD, Loren V, van Themaat E, Koornneef M, Aarts MGM (2006) Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiol 142:1127–1147PubMedGoogle Scholar
  180. van de Mortel JE, Schat H, Moerland PD, Loren V, van Themaat E, van der Ent S, Blankestijn H, Ghandilyan A, Tsiatsiani S, Aarts MG (2008) Expression differences for genes involved in lignin, glutathione and sulphate metabolism in response to cadmium in Arabidopsis thaliana and the related Zn/Cd-hyperaccumulator Thlaspi caerulescens. Plant Cell Environ 31:301–324PubMedGoogle Scholar
  181. Van Huysen T, Terry N, Pilon-Smits EAH (2004) Exploring the selenium phytoremediation potential of transgenic Indian mustard overexpressing ATP sulfurylase or cystathionine-gamma-synthase. Int J Phytoremediation 6:111–118PubMedGoogle Scholar
  182. Vašák M, Meloni G (2011) Chemistry and biology of mammalian metallothioneins. J Biol Inorg Chem 16:1067–1078PubMedGoogle Scholar
  183. Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776PubMedGoogle Scholar
  184. von Rozycki T, Nies DH (2009) Cupriavidus metallidurans: evolution of a metal-resistant bacterium. Antonie van Leeuwenhoek 96:115–139Google Scholar
  185. Vrbova M, Kotrba P, Horacek J, Smykal P, Svabova L, Vetrovcova M, Smykalova I, Griga M (2012) Enhanced accumulation of cadmium in Linum usitatissimum L. plants due to overproduction of metallothionein α-domain as a fusion to β-glucuronidase protein. Plant Cell Tiss Org. doi: 10.1007/s11240-012-0239-1
  186. Wangeline AL, Burkhead JL, Hale KL, Lindblom SD, Terry N, Pilon M, Pilon-Smits EA (2004) Overexpression of ATP sulfurylase in Indian mustard: effects on tolerance and accumulation of twelve metals. J Environ Qual 33:54–60PubMedGoogle Scholar
  187. Weber M, Harada E, Vess C, von Roepenack-Lahaye E, Clemens S (2004) Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors. Plant J 37:269–281PubMedGoogle Scholar
  188. Weber M, Trampczynska A, Clemens S (2006) Comparative transcriptome analysis of toxic metal responses in Arabidopsis thaliana and the Cd2+ hypertolerant facultative metallophyte Arabidopsis halleri. Plant Cell Environ 29:950–963PubMedGoogle Scholar
  189. Wickner W (2010) Membrane fusion: five lipids, four SNAREs, three chaperones, two nucleotides, and a Rab, all dancing in a ring on yeast vacuoles. Annu Rev Cell Dev Biol 26: 115–136PubMedGoogle Scholar
  190. Woo OK, Ham TH, Ji HS, Choi MS, Jiang W, Chu SH, Piao R, Chin JH, Kim JA, Park BS, Seo HS, Jwa NS, McCouch S, Koh HJ (2008) Inactivation of the UGPase1 gene causes genic male sterility and endosperm chalkiness in rice (Oryza sativa L.). Plant J 54:190–204PubMedGoogle Scholar
  191. Wu Q, Shigaki T, Williams KA, Han JS, Kim CK, Hirschi KD, Park S (2011) Expression of an Arabidopsis Ca2+/H+ antiporter CAX1 variant in petunia enhances cadmium tolerance and accumulation. J Plant Physiol 168:167–173PubMedGoogle Scholar
  192. Xu J, Chai T, Zhang Y, Lang M, Han L (2009) The cation-efflux transporter BjCET2 mediates zinc and cadmium accumulation in Brassica juncea L. leaves. Plant Cell Rep 28:1235–1242PubMedGoogle Scholar
  193. Yamasaki H, Hayashi M, Fukazawa M, Kobayashi Y, Shikanai T (2009) SQUAMOSA promoter binding protein-like7 is a central regulator for copper homeostasis in Arabidopsis. Plant Cell 21:347–361PubMedGoogle Scholar
  194. Yang H, Nairn J, Ozias-Akins P (2003) Transformation of peanut using a modified bacterial mercuric ion reductase gene driven by an actin promoter from Arabidopsis thaliana. J Plant Physiol 160:945–952PubMedGoogle Scholar
  195. Yazaki K, Yamanaka N, Masuno T, Konagai S, Shitan N, Kaneko S, Ueda K, Sato F (2006) Heterologous expression of a mammalian ABC transporter in plant and its application to phytoremediation. Plant Mol Biol 61:491–503PubMedGoogle Scholar
  196. Zheng L, Cheng Z, Ai C, Jiang X, Bei X, Zheng Y, Glahn RP, Welch RM, Miller DD, Lei XG, Shou H (2010) Nicotianamine, a novel enhancer of rice iron bioavailability to humans. PLoS One 5:e10190PubMedGoogle Scholar
  197. Zhou SF, Wang LL, Di YM, Xue CC, Duan W, Li CG, Li Y (2008) Substrates and inhibitors of human multidrug resistance associated proteins and the implications in drug development. Curr Med Chem 15:1981–2039PubMedGoogle Scholar
  198. Zhu YL, Pilon-Smits EA, Jouanin L, Terry N (1999a) Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiol 119:73–80Google Scholar
  199. Zhu YL, Pilon-Smits EA, Tarun AS, Weber SU, Jouanin L, Terry N (1999b) Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing γ-glutamylcysteine synthetase. Plant Physiol 121:1169–1178PubMedGoogle Scholar
  200. Zuo J, Niu Q, Ikeda Y, Chua N (2002) Marker-free transformation: increasing transformation frequency by the use of regeneration-promoting genes. Curr Opin Biotechnol 13:173–180PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Biochemistry and MicrobiologyInstitute of Chemical Technology, PraguePragueCzech Republic

Personalised recommendations