Phytoremediation Protocols: An Overview

  • Soumya ChatterjeeEmail author
  • Anindita Mitra
  • Sibnarayan Datta
  • Vijay Veer
Part of the Soil Biology book series (SOILBIOL, volume 35)


Phytoremediation is a developed technology which exploits naturally occurring uptake capabilities of plant root system, together with the translocation, bioaccumulation, or detoxifying abilities to clean up the surrounding environments. Several strategies used by plants for dealing with xenobiotics include phytostabilization, phytoextraction, phytovolatilization, rhizofiltration, phytodegradation, and phytostimulation. Phytoextraction involves the cultivation of hyperaccumulating plant varieties that concentrate or translocate soil contaminants in their harvestable shoot, whereas phytostabilization aims to immobilize the contaminants within rhizosphere, thus preventing their escape into the trophic level. Uptake and transpiration of heavy metals into a less toxic form is the basis of phytostabilization. In rhizofiltration technology, aquatic plants are used to absorb, concentrate, and remove hazardous compounds from aqueous environment by their root system. Various soil and plant factors such as soil’s physical and chemical properties, plant and microbial exudates, mobility and bioavailability of metals, plants ability to uptake, translocate, sequester, and detoxify metal account for phytoremediation efficiency. Transgenics are becoming new promising tools to enhance phytoremediation potential. This chapter overviews different methods and approaches in phytoremediation strategy.


Transgenic Plant Endophytic Bacterium Brassica Juncea Polynuclear Aromatic Hydrocarbon Phytoextraction Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Authors wish to convey thanks and appreciation to Mrs. Swagata Chatterjee for the illustrations in the chapter.


  1. Abhilash PC, Jamil S, Singh N (2009) Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics. Biotechnol Adv 27:474–488PubMedCrossRefGoogle Scholar
  2. Alkorta I, Hernandez-Allica J, Becerril JM, Amezaga I, Albizu I, Garbisu I (2004) Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as Zn, Cd, Pb and arsenic. Rev Environ Sci Biotechnol 3:71–90CrossRefGoogle Scholar
  3. Anderson TA, Kruger EL, Coats JR (1994) Enhanced degradation of a mixture of three herbicides in the rhizosphere of an herbicide-tolerant plant. Chemosphere 28:1551–1557CrossRefGoogle Scholar
  4. Azadpour A, Matthews JE (1996) Remediation of metal-contaminated sites using plants. Remediation 6:1–18CrossRefGoogle Scholar
  5. Banuelos G, Terry N, Leduc DL, Pilon Smits EA, Mackey B (2005) Field trial of transgenic Indian mustard plants shows enhanced phytoremediation of selenium contaminated sediment. Environ Sci Technol 39:1771–1777PubMedCrossRefGoogle Scholar
  6. Bennett LE, Burkhead JL, Hale KL, Terry N, Pilon M, Pilon-Smits EA (2003) Analysis of transgenic Indian mustard plants for phytoremediation of metal contaminated mine tailings. J Environ Qual 32:432–440PubMedGoogle Scholar
  7. Bhargava A, Carmona F, Bhargava M, Srivastava S (2012) Approaches for enhanced phytoextraction of heavy metals. J Environ Manage 105:103–120PubMedCrossRefGoogle Scholar
  8. Bizily SP, Rugh CL, Meagher RB (2000) Phytodetoxification of hazardous organomercurials by genetically engineered plants. Nat Biotechnol 18:213–217PubMedCrossRefGoogle Scholar
  9. Bizily SP, Kim T, Kandasamy MK, Meagher RB (2003) Subcellular targeting of methyl Hg lyase enhances its specific activity for organic Hg detoxification in plants. Plant Physiol 131: 463–471PubMedCrossRefGoogle Scholar
  10. Boyajian GE, Carreira LH (1997) Phytoremediation: a clean transition from laboratory to marketplace? Nat Biotechnol 15:127–128PubMedCrossRefGoogle Scholar
  11. Brooks RR, Robinson BH (1998) Aquatic phytoremediation by accumulator plants. In: Brooks RR (ed) Plants that hyperaccumulate heavy metals: their role in archaeology, microbiology, mineral exploration, phytomining and phytoremediation. CAB International, WallingfordGoogle Scholar
  12. Brunner I, Lustera J, Gunthardt-Goerga MS, Frey B (2008) Heavy metal accumulation and phytostabilisation potential of tree fine roots in a contaminated soil. Environ Pollut 152: 559–568PubMedCrossRefGoogle Scholar
  13. Carreira LH, Wolfe NL (1996) Isolation of a sediment nitroreductase, antibody production, and identification of possible plant sources. Presented at IBC international symposium phytomedicine, Arington, VAGoogle Scholar
  14. Chaney RL, Angle JS, McIntosh MS, Reeves RD, Li YM, Brewer EP (2005) Using hyperaccumulator plants to phytoextract soil Ni and Cd. Z Naturforsch C 60:190–198PubMedGoogle Scholar
  15. Clemens S, Palmgren MG, Kraemer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–315PubMedCrossRefGoogle Scholar
  16. Cooney CM (1996) News: Sunflowers remove radionuclides from water on ongoing phytoremediation field tests. Environ Sci Technol 30:194APubMedCrossRefGoogle Scholar
  17. Cotter-Howells JD, Capom S (1996) Remediation of contaminated land by formation of heavy metal phosphates. Appl Geochem 11:335–342CrossRefGoogle Scholar
  18. Cunningham SD, Anderson TA, Schwab P, Hsu FC (1996) Phytoremediation of soils contaminated with organic pollutants. Adv Agron 56:55–114CrossRefGoogle Scholar
  19. Czako M, Feng X, He Y, Liang D, Marton L (2006) Transgenic Spartina alterniflora for phytoremediation. Environ Geochem Health 28:103–110PubMedCrossRefGoogle Scholar
  20. Dec J, Bollag JM (1994) Use of plant material for the decontamination of water polluted with phenols. Biotechnol Bioeng 44:1132–1139PubMedCrossRefGoogle Scholar
  21. Deng D, Deng J, Li J, Zhang J, Hu M, Lin Z (2008) Accumulation of zinc, cadmium, and lead in four populations of Sedum alfredii growing on lead/zinc mine spoils. J Integr Plant Biol 50: 691–698PubMedCrossRefGoogle Scholar
  22. Dhankher OP, Li Y, Rosen BP, Shi J, Salt D, Senecoff JF (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and γ- glutamylcysteine synthetase expression. Nat Biotechnol 20:1140–1145PubMedCrossRefGoogle Scholar
  23. Doty SL (2008) Enhancing phytoremediation through the use of transgenic and endophytes. New Phytol 179:318–333PubMedCrossRefGoogle Scholar
  24. Doty S, Shang Q, Wilson A, Moore A, Newman L, Strand S, Gordon M (2000) Enhanced metabolism of halogenated hydrocarbons in transgenic plants contain mammalian P450 2E1. Proc Nat Acad Sci USA 97:6287–6291PubMedCrossRefGoogle Scholar
  25. Duran N, Esposito E (2002) Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review. App Catal B Environ 28:83–99CrossRefGoogle Scholar
  26. Dushenkov V, Kumar NPBA, Motto H, Raskin I (1995) Rhizofiltration: the use of plants to remove heavy metals from aqueous streams. Environ Sci Technol 29:1239–1245PubMedCrossRefGoogle Scholar
  27. Dushenkov S, Kapulnik Y, Blaylock M, Sorochisky B, Raskin I, Ensley B (1997) Phytoremediation: a novel approach to an old problem. In: Wise DL (ed) Global environmental biotechnology. Elsevier, Amsterdam, pp 563–572Google Scholar
  28. Dushenkov S, Skarzhinskaya M, Glimelius K, Gleba D, Raskin I (2002) Bioengineering of a phytoremediation plant by means of somatic hybridization. Int J Phytoremediation 4:117–126PubMedCrossRefGoogle Scholar
  29. Eapen S, Suseelan KN, Tivarekar S, Kotwal SA, Mitra R (2003) Potential for rhizofiltration of uranium using hairy root cultures of Brassica juncea and Chenopodium amaranticolor. Environ Res 91:127–133PubMedCrossRefGoogle Scholar
  30. Eapen S, Singh S, D’Souza S (2007) Advances in development of transgenic plants for remediation of xenobiotic pollutants. Biotechnol Adv 25:42–451CrossRefGoogle Scholar
  31. Ernst WHO (2005) Phytoextraction of mine wastes-options and impossibilities. Chem Erde 65: 29–42CrossRefGoogle Scholar
  32. Flocco CG, Lindblom SD, Smits EA (2004) Overexpression of enzymes involved in glutathione synthesis enhances tolerance to organic pollutants in Brassica juncea. Int J Phytoremediation 6:289–304PubMedCrossRefGoogle Scholar
  33. Fu FL, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 92:407–418PubMedCrossRefGoogle Scholar
  34. Fulekar MH, Singh A, Bhaduri AM (2009) Genetic engineering strategies for enhancing phytoremediation of heavy metals. Afr J Biotechnol 8:529–535Google Scholar
  35. Garbisu C, Hernandez-Allica J, Barrutia O, Alkorta I, Becerril JM (2002) Phytoremediation: a technology using green plants to remove contaminants from polluted areas. Rev Environ Health 7:173–188Google Scholar
  36. Gisbert C, Ros R, De Haro A, Walker DJ, Pilar Bernal M, Serrano R (2003) A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem Biophys Res Commun 303:440–445PubMedCrossRefGoogle Scholar
  37. Gleba D, Gleba Y, Skarzhinskaya M, Glimelius K, Raskin I (1998) Transfer of resistance to heavy metals from Thlaspi to Brassica by asymmetric hybridization, Abstract of IXth international congress on plant tissue culture, JerusalemGoogle Scholar
  38. Gleba D, Borisjuk NV, Borisjuk LG, Kneer R, Poulev A, Skarzhinskaya M, Dushenkov S, Logendra S, Gleba YY, Raskin I (1999) Use of plant roots for phytoremediation and molecular farming. Proc Nat Acad Sci USA 96:5973–5977PubMedCrossRefGoogle Scholar
  39. Guo J, Dai X, Xu W, Ma M (2008) Overexpressing gsh1 and AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere 72:1020–1026PubMedCrossRefGoogle Scholar
  40. Hannink N, Rosser SJ, French CE, Basran A, Murray JA, Nicklin S, Bruce NC (2001) Phytodetoxification of TNT by transgenic plants expressing a bacterial nitroreductase. Nat Biotechnol 19: 1168–1172PubMedCrossRefGoogle Scholar
  41. Heaton ACP, Rugh CL, Kim T, Wang NJ, Meagher RB (2003) Toward detoxifying mercury polluted aquatic sediments with rice genetically engineered for mercury resistance. Environ Toxicol Chem 22:2940–1147PubMedCrossRefGoogle Scholar
  42. Hirata K, Tsuji N, Miyamoto K (2005) Biosynthetic regulation of phytochelatins, heavy metal-binding peptides. J Biosci Bioeng 100:593–599PubMedCrossRefGoogle Scholar
  43. James BR (1996) The challenge of remediating chromium contaminated soils. Environ Sci Technol 30:248–251CrossRefGoogle Scholar
  44. Jansen M, Hill L, Thorneleye RA (2004) A novel stress-acclimation response in Spirodela punctata (Lemna-ceae): 2,4,6 trichlorophenol triggers an increase in the level of an extracellular peroxidase, capable of the oxidative dechlorination of this xenobiotic pollutant. Plant Cell Environ 27:603–613CrossRefGoogle Scholar
  45. January MC, Cutright TJ, Van Keulen H, Wei R (2008) Hydroponic phytoremediation of Cd, Cr, Ni, As, and Fe: can Helianthus annuus hyperaccumulate multiple heavy metals? Chemosphere 70:531–537PubMedCrossRefGoogle Scholar
  46. Javaid A (2011) Importance of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. In: Khan MS, Zaidi A, Goel R, Musarrat J (eds) Biomanagement of metal-contaminated soils. Springer, New YorkGoogle Scholar
  47. Kawahigashi H (2009) Transgenic plants for phytoremediation of herbicides. Curr Opin Biotechnol 20:225–230PubMedCrossRefGoogle Scholar
  48. Khade HW, Adholeya A (2009) Arbuscular mycorrhizal association in plants growing on metal-contaminated and noncontaminated soils adjoining Kanpur tanneries, Uttar Pradesh, India. Water Air Soil Pollut 202:45–56CrossRefGoogle Scholar
  49. Kidd P, Barcelob J, Bernal MP, Navari-Izzo F, Poschenriederb C, Shileve S, Clemente R, Monterroso C (2009) Trace element behaviour at the root–soil interface: implications in phytoremediation. Environ Exp Bot 67:243–259CrossRefGoogle Scholar
  50. Kotrba P, Macek T, Ruml T (1999) Heavy metal-binding peptides and proteins in plants. Collect Czech Chem Commun 64:1057–1086CrossRefGoogle Scholar
  51. Kramer U (2005) Phytoremediation: novel approaches to cleaning up polluted soils. Curr Opin Biotechnol 16:133–141PubMedCrossRefGoogle Scholar
  52. Landmeyer JE (2011) Introduction to phytoremediation of contaminated groundwater. Springer, London. ISBN 978-94-007-1956-9Google Scholar
  53. LeDuc DL, Tarun AS, Montes-Bayon M, Meija J, Malit MF, Wu CP (2004) Overexpression of selenocysteine methyltransferase in Arabidopsis and Indian mustard increases selenium tolerance and accumulation. Plant Physiol 135:377–383PubMedCrossRefGoogle Scholar
  54. Lee S, Moon JS, Ko TS, Petros D, Goldsbrough PB, Korban SS (2003) Overexpression of Arabidopsis phytochelatin synthase paradoxycally leads to hypersensitivity to Cd stress. Plant Physiol 131:656–663PubMedCrossRefGoogle Scholar
  55. Li YM, Chaney RL (1998) Case studies in the field–Industrial sites: phytostabilization of zinc smelter contaminated sites–the Palmerton case. In: Vangronsveld J, Cunningham SD (eds) Metal-contaminated soils. In situ inactivation and phytorestoration. Springer, BerlinGoogle Scholar
  56. Lone MI, He ZH, Stoffella J, Yang X (2008) Phytoremediation of heavy metal polluted soils and water: progresses and perspectives. J Zhejiang Univ Sci B 9:210–220PubMedCrossRefGoogle Scholar
  57. Lovley DR (2003) Cleaning up with genomics: applying molecular biology to bioremediation. Nat Rev Microbiol 1:35–44PubMedCrossRefGoogle Scholar
  58. Lu L, Tian S, Yang X, Wang X, Brown P, Li T (2008) Enhanced root-to-shoot translocation of cadmium in the hyperaccumulating ecotype of Sedum alfredii. J Exp Bot 59:3203–3213PubMedCrossRefGoogle Scholar
  59. Luo S, Wan Y, Xiao X, Guo H, Chen L, Xi Q, Zeng G, Liu C, Chen J (2011) Isolation and characterization of endophytic bacterium LRE07 from cadmium hyperaccumulator Solanum nigrum L and its potential for remediation. Appl Microbiol Biotechnol 89:1637–1644PubMedCrossRefGoogle Scholar
  60. Lyyra S, Meagher RB, Kim T, Heaton A, Montello P, Balish RS (2007) Coupling two mercury resistance genes in eastern cottonwood enhances the processing of organomercury. Plant Biotechnol J 5:254–262PubMedCrossRefGoogle Scholar
  61. Ma JF, Nomoto K (1996) Effective regulation of iron acquisition in graminaceous plants. The role of mugineic acids as phytosiderophores. Physiol Planta 97:609–617CrossRefGoogle Scholar
  62. Ma CY, Logan TJ, Traina SJ et al (1995) Lead immobilization from aqueous solutions and contaminated soils using phosphate rocks. Environ Sci Technol 29:1118–l126PubMedCrossRefGoogle Scholar
  63. Macek T, Mackova M, Kas J (2000) Exploitation of plants for the removal of organics in environmental remediation. Biotechnol Adv 18:23–34PubMedCrossRefGoogle Scholar
  64. Marques APGC, Rangel AOSS, Castro PML (2009) Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology. Crit Rev Environ Sci Technol 39:622–654CrossRefGoogle Scholar
  65. Mayer AM, Staples RC (2002) Laccase: new functions for an old enzyme. Phytochemistry 60: 551–565PubMedCrossRefGoogle Scholar
  66. McCutcheon SC, Schnoor JL (2003) Phytoremediation–transformation and control of contaminants. Wiley, Hoboken, NJGoogle Scholar
  67. Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 3:153–162PubMedCrossRefGoogle Scholar
  68. Mench MJ, Didier VL, Lofler M, Gomez A, Masson P (1994) A mimicked in-situ remediation study of metal-contaminated soils with emphasis on cadmium and lead. J Environ Qual 23: 58–63CrossRefGoogle Scholar
  69. Milner MJ, Kochian LV (2008) Investigating heavy-metal hyperaccumulation using Thlaspi caerulescens as a model system. Ann Bot 102:3–13PubMedCrossRefGoogle Scholar
  70. Miransari M (2011) Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol Adv 29:645–653PubMedCrossRefGoogle Scholar
  71. Nehnevajova E, Herzig R, Erismann KH, Schwitzguébel JP (2007) In vitro breeding of Brassica juncea L to enhance metal accumulation and extraction properties. Plant Cell Rep 26:429–437PubMedCrossRefGoogle Scholar
  72. Norman AG (1962) The uniqueness of plants. Am Sci 50:436–449, Accessed 09 Sep 2012Google Scholar
  73. Olguın EJ, Sanchez-Galvan G (2012) Heavy metal removal in phytofiltration and phycoremediation: the need to differentiate between bioadsorption and bioaccumulation. Nat Biotechnol 30(1):3–8CrossRefGoogle Scholar
  74. Padmavathiamma PK, Li LY (2007) Phytoremediation technology: hyper-accumulation metals in plants. Water Air Soil Pollut 184:105–126CrossRefGoogle Scholar
  75. Pan AH, Yang M, Tie F, Li L, Che Z, Ru B (1994) Expression of mouse metallothionein-I gene confers Cd resistance in transgenic tobacco plants. Plant Mol Biol 24:341–351PubMedCrossRefGoogle Scholar
  76. Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39PubMedCrossRefGoogle Scholar
  77. Pilon-Smits E, Pilon M (2002) Phytoremediation of metals using transgenic plants. Crit Rev Plant Sci 21:439–456CrossRefGoogle Scholar
  78. Pilon-Smits EAH, Hwang S, Lytle C, Zhu Y, Tai JC, Bravo RC, Chen Y, Leustek T, Terry N et al (1999) Overexpression of ATP sulfurylase in Indian mustard to increased selenate uptake, reduction, and tolerance. Plant Physiol 119:123–132PubMedCrossRefGoogle Scholar
  79. Rai UN, Pal A (1999) Toxic metals and phytoremediation. EnviroNews, Newsletter of International Society of Environmental Botanists, India, vol 5(4)Google Scholar
  80. Rai PK (2012) An eco-sustainable green approach for heavy metals management: two case studies of developing industrial region. Environ Monit Assess 184:421–448PubMedCrossRefGoogle Scholar
  81. Raskin I (1996) Plant genetic engineering may help with environmental cleanup [commentary]. Proc Natl Acad Sci USA 93:3164–3166PubMedCrossRefGoogle Scholar
  82. Rugh CL, Wilde HD, Stack NM, Thompson DM, Summers AO, Meagher RB (1996) Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proc Natl Acad Sci USA 93:3182–3187PubMedCrossRefGoogle Scholar
  83. Rugh CL, Senecoff JF, Meagher RB, Merkle SA (1998) Development of transgenic yellow poplar for mercury phytoremediation. Nat Biotechnol 16:925–928PubMedCrossRefGoogle Scholar
  84. Ruiz ON, Hussein HS, Terry N, Daniell H (2003) Phytoremediation of organomercurial compounds via chloroplast genetic engineering. Plant Physiol 132:1344–1352PubMedCrossRefGoogle Scholar
  85. Rylott EL, Jackson RG, Edwards J, Womack GL, Seth-Smith HM, Rathbone DA, Strand SE, Bruce NC (2006) An explosive degrading cytochrome P450 activity and its targeted application for the phytoremediation of RDX. Nat Biotechnol 24:216–219PubMedCrossRefGoogle Scholar
  86. Salt DE, Blaylock M, Kumar NPBA, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468–474PubMedCrossRefGoogle Scholar
  87. Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49: 643–668PubMedCrossRefGoogle Scholar
  88. Schnoor JL, Licht LA, McCutcheon SC, Wolfe NL, Carreira LH (1995) Phytoremediation of organic and nutrient contaminants. Environ Sci Technol 29:318–323Google Scholar
  89. Seth CS (2012) A review on mechanisms of plant tolerance and role of transgenic plants in environmental clean-up. Bot Rev 78:32–62CrossRefGoogle Scholar
  90. Shah K, Nongkynrih JM (2007) Metal hyperaccumulation and bioremediation. Biol Plant 51: 618–634CrossRefGoogle Scholar
  91. Silver S, Phung L (2005) A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. J Ind Microbiol Biotechnol 32:587–605PubMedCrossRefGoogle Scholar
  92. Singer A (2006) The chemical ecology of pollutants biodegradation. In: Mackova M (ed) Phytoremediation and rhizoremediation: theoretical background. Springer, Berlin, pp 133–143Google Scholar
  93. Sonoki T, Kajita S, Ikeda S, Uesugi M, Tatsumi K, Katayama Y, Iimura Y (2005) Transgenic tobacco expressing fungal laccase promotes the detoxification of environmental pollutants. Appl Microbiol Biotechnol 67:138–142PubMedCrossRefGoogle Scholar
  94. Spaczynski M, Aleksandra SK, Paweł P, Agnieszka B, EwaSkorzynska P (2012) Phytodegradation and biodegradation in rhizosphere as efficient methods of reclamation of soil contaminated by organic chemicals (a review). Acta Agrophys 19:155–169Google Scholar
  95. Stearns JC, Shah S, Greenberg BM, Dixon DG, Glick BR (2005) Tolerance of transgenic canola expressing 1-aminocyclopropane-1-carboxylic acid deaminase to growth inhibition by Ni. Plant Physiol Biochem 43:701–708PubMedCrossRefGoogle Scholar
  96. Taghavi S, van der Lelie D, Hoffman A, Zhang YB, Walla MD, Vangronsveld J, Newman L, Monchy S (2010) Genome sequence of the plant growth promoting endophytic bacterium Enterobacter sp. 638. PLoS Genet 6:e1000943PubMedCrossRefGoogle Scholar
  97. Terry N, Zayed AM, De Souza MP, Tarun AS (2000) Selenium in higher plants. Annu Rev Plant Physiol Plant Mol Biol 51:401–432PubMedCrossRefGoogle Scholar
  98. Thomas JC, Davies EC, Malick FK, Endreszl C, Williams CR, Abbas M, Petrella S, Swisher K, Perron M, Edwards R, Ostenkowski P, Urbanczyk N, Wiesend WN, Murray KS (2003) Yeast metallothionein in transgenic tobacco promotes Cu uptake from contaminated soils. Biotechnol Prog 19:273–280PubMedCrossRefGoogle Scholar
  99. Uchida E, Ouchi T, Suzuki Y, Yoshida T, Habe H, Vamaguchi I (2005) Secretion of bacterial xenobiotic-degrading enzymes from transgenic plants by an apoplastic expressional system: an applicability for phytoremediation. Environ Sci Technol 39:7671–7677PubMedCrossRefGoogle Scholar
  100. Vamerali T, Bandiera M, Mosca G (2010) Field crops for phytoremediation of metal-contaminated land: a review. Environ Chem Lett 8:1–17CrossRefGoogle Scholar
  101. VanAken B (2009) Transgenic plants for enhanced phytoremediation of toxic explosives. Curr Opin Biotechnol 20:231–236CrossRefGoogle Scholar
  102. Vangronsveld J, Stercks J, Van Assche F, Clijsters H (1995) Rehabilitation studies on an old nonferrous waste dumping ground: effects of revegetation and metal immobilization by beringite. J Geochem Exp 52:221–229CrossRefGoogle Scholar
  103. Vassilev A, Schwitzguebel JP, Thewys T, Van Der Lelie D, Vangronsveld J (2004) The use of plants for remediation of metal-contaminated soils. Sci World J 4:9–34CrossRefGoogle Scholar
  104. Vazquez S, Agha R, Granado A, Sarro MJ, Esteban E, Penalosa JM, Carpena RO (2006) Use of white lupin plant for phytostabilization of Cd and As polluted acid soil. Water Air Soil Pollut 177:349–365CrossRefGoogle Scholar
  105. Walton BT, Holyman AM, Perez MM, Anderson TA, Johnson TR (1994) Rhizosphere microbial community as a plant defense against toxic substances in soil. In: Anderson TA, Coats JR (eds) Bioremediation through rhizosphere technology, vol 563. American Chemical Society, Washington, DC, pp 82–92CrossRefGoogle Scholar
  106. Wang GD, Chen XY (2007) Detoxification of soil phenolic pollutants by plant secretory enzyme. In: Willey N (ed) Phytoremediation: methods and reviews. Humana, Totowa, NJGoogle Scholar
  107. Wang G, Li Q, Luo B, Chen X (2004) Ex planta phytoremediation of trichlorophenol and phenolic al-lelochemicals via an engineered secretory laccase. Nat Biotechnol 22:893–897PubMedCrossRefGoogle Scholar
  108. Wenzel WW, Adrino DC, Salt D, Smith R (1999) Phytoremediation: a plant-microbe-based remediation system. In: Adriano DC (ed) Bioremediation of contaminated Soils, vol 37, Agronomy monographs. ASA, CSSA and SSSA, Madison, WI, pp 457–508Google Scholar
  109. Wolfe NL, Ou T-Y, Carreira L (1993) Biochemical remediation of TNT contaminated soils. Technical Report prepared for the U.S. Army Corps of Engineers, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MSGoogle Scholar
  110. Yang H, Nairn J, Ozias-Akins P (2003) Transformation of peanut using a modified bacterial mercuric ion reductase gene driven by an actin promoter from Arabidopsis thaliana. J Plant Physiol 160:945–952PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Soumya Chatterjee
    • 1
    Email author
  • Anindita Mitra
    • 2
  • Sibnarayan Datta
    • 1
  • Vijay Veer
    • 1
  1. 1.Defence Research Laboratory, DRDOTezpurIndia
  2. 2.Department of ZoologyBankura Christian CollegeBankuraIndia

Personalised recommendations