Exploiting Schema and Documentation for Summarizing Relational Databases

  • Ammar Yasir
  • Mittapally Kumara Swamy
  • Polepalli Krishna Reddy
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7678)


Schema summarization approaches are used for carrying out schema matching and developing user interfaces. Generating schema summary for any given database is a challenge which involves identifying semantically correlated elements in a database schema. Research efforts are being made to propose schema summarization approaches by exploiting database schema and data stored in the database. In this paper, we have made an effort to propose an efficient schema summarization approach by exploiting database schema and the database documentation. We propose a notion of table similarity by exploiting referential relationship between tables and the similarity of passages describing the corresponding tables in the database documentation. Using the notion of table similarity, we propose a clustering based approach for schema summary generation. Experimental results on a benchmark database show the effectiveness of the proposed approach.


Schema Schema Summarization Database Usability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nandi, A., Jagadish, H.V.: Guided interaction: Rethinking the query-result paradigm. PVLDB 4(12), 1466–1469 (2011)Google Scholar
  2. 2.
    Jagadish, H.V., Chapman, A., Elkiss, A., Jayapandian, M., Li, Y., Nandi, A., Yu, C.: Making database systems usable. In: Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data, SIGMOD 2007, pp. 13–24. ACM, New York (2007)CrossRefGoogle Scholar
  3. 3.
    Yu, C., Jagadish, H.V.: Schema summarization, pp. 319–330 (2006)Google Scholar
  4. 4.
    Doan, A., Halevy, A.Y.: Semantic-integration research in the database community. AI Mag. 26(1), 83–94 (2005)Google Scholar
  5. 5.
    Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. The VLDB Journal 10(4), 334–350 (2001)zbMATHCrossRefGoogle Scholar
  6. 6.
    Xue Wang, X.Z., Wang, S.: Summarizing large-scale database schema using community detection. Journal of Computer Science and Technology, SIGMOD 2008 (2012)Google Scholar
  7. 7.
    Yang, X., Procopiuc, C.M., Srivastava, D.: Summarizing relational databases. Proc. VLDB Endow. 2(1), 634–645 (2009)Google Scholar
  8. 8.
    Wu, W., Reinwald, B., Sismanis, Y., Manjrekar, R.: Discovering topical structures of databases. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, SIGMOD 2008, pp. 1019–1030. ACM, New York (2008)CrossRefGoogle Scholar
  9. 9.
    Bergamaschi, S., Castano, S., Vincini, M.: Semantic integration of semistructured and structured data sources. SIGMOD Rec. 28(1), 54–59 (1999)CrossRefGoogle Scholar
  10. 10.
    Palopoli, L., Terracina, G., Ursino, D.: Experiences using dike, a system for supporting cooperative information system and data warehouse design. Inf. Syst. 28(7), 835–865 (2003)CrossRefGoogle Scholar
  11. 11.
    Madhavan, J., Bernstein, P.A., Rahm, E.: Generic schema matching with cupid. In: Proceedings of the 27th International Conference on Very Large Data Bases, VLDB 2001, pp. 49–58. Morgan Kaufmann Publishers Inc., San Francisco (2001)Google Scholar
  12. 12.
  13. 13.
    Clarke, C.L.A., Cormack, G.V., Kisman, D.I.E., Lynam, T.R.: Question answering by passage selection (multitext experiments for trec-9). In: TREC (2000)Google Scholar
  14. 14.
    Ittycheriah, A., Franz, M., Jing Zhu, W., Ratnaparkhi, A., Mammone, R.J.: Ibm’s statistical question answering system. In: Proceedings of the Tenth Text Retrieval Conference, TREC (2000)Google Scholar
  15. 15.
    Salton, G., Allan, J., Buckley, C.: Approaches to passage retrieval in full text information systems. In: Proceedings of the 16th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 1993, pp. 49–58. ACM, New York (1993)CrossRefGoogle Scholar
  16. 16.
    Tellex, S., Katz, B., Lin, J., Fernandes, A., Marton, G.: Quantitative evaluation of passage retrieval algorithms for question answering. In: Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Informaion Retrieval, SIGIR 2003, pp. 41–47. ACM, New York (2003)CrossRefGoogle Scholar
  17. 17.
    Wang, M., Si, L.: Discriminative probabilistic models for passage based retrieval. In: Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2008, pp. 419–426. ACM, New York (2008)CrossRefGoogle Scholar
  18. 18.
    Xi, W., Xu-Rong, R., Khoo, C.S.G., Lim, E.-P.: Incorporating window-based passage-level evidence in document retrieval. JIS 27(2), 73–80 (2001)Google Scholar
  19. 19.
    Robertson, S., Walker, S., Jones, S., Hancock-Beaulieu, M., Gatford, M.: Okapi at trec-3, pp. 109–126 (1996)Google Scholar
  20. 20.
    Zhou, Y., Cheng, H., Yu, J.X.: Graph clustering based on structural/attribute similarities. Proc. VLDB Endow. 2(1), 718–729 (2009)Google Scholar
  21. 21.
    Dyer, M., Frieze, A.: A simple heuristic for the p-centre problem. Oper. Res. Lett. 3(6), 285–288 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Rangrej, A., Kulkarni, S., Tendulkar, A.V.: Comparative study of clustering techniques for short text documents. In: Proceedings of the 20th International Conference Companion on World Wide Web, WWW 2011, pp. 111–112. ACM, New York (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ammar Yasir
    • 1
  • Mittapally Kumara Swamy
    • 1
  • Polepalli Krishna Reddy
    • 1
  1. 1.Center for Data EngineeringInternational Institute of Information Technology-HyderabadHyderabadIndia

Personalised recommendations