An On-Line On-Board Distributed Algorithm for Evolutionary Robotics

  • Robert-Jan Huijsman
  • Evert Haasdijk
  • A. E. Eiben
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7401)


Imagine autonomous, self-sufficient robot collectives that can adapt their controllers autonomously and self-sufficiently to learn to cope with situations unforeseen by their designers. As one step towards the realisation of this vision, we investigate on-board evolutionary algorithms that allow robot controllers to adapt without any outside supervision and while the robots perform their proper tasks. We propose an evag-based on-board evolutionary algorithm, where controllers are exchanged among robots that evolve simultaneously. We compare it with the ( μ + 1) on-line algorithm, which implements evolutionary adaptation inside a single robot. We perform simulation experiments to investigate algorithm performance and use parameter tuning to evaluate the algorithms at their best possible parameter settings. We find that distributed on-line on-board evolutionary algorithms that share genomes among robots such as our evag implementation effectively harness the pooled learning capabilities, with an increasing benefit over encapsulated approaches as the number of participating robots grows.


evolutionary robotics on-line evolution distributed evolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bianco, R., Nolfi, S.: Toward open-ended evolutionary robotics: evolving elementary robotic units able to self-assemble and self-reproduce. Connection Science 4, 227–248 (2004)CrossRefGoogle Scholar
  2. 2.
    Eiben, A.E., Karafotias, G., Haasdijk, E.: Self-adaptive mutation in on-line, on-board evolutionary robotics. In: 2010 Fourth IEEE International Conference on Self-Adaptive and Self-Organizing Systems Workshop (SASOW 2010), pp. 147–152. IEEE Press, Piscataway (2010)CrossRefGoogle Scholar
  3. 3.
    Eiben, A.E., Smit, S.K.: Parameter tuning for configuring and analyzing evolutionary algorithms. Swarm and Evolutionary Computation 1(1), 19–31 (2011)CrossRefGoogle Scholar
  4. 4.
    Elfwing, S., Uchibe, E., Doya, K., Christensen, H.I.: Biologically inspired embodied evolution of survival. In: Proceedings of the 2005 IEEE Congress on Evolutionary Computation, Edinburgh, UK, September 2-5, vol. 3, pp. 2210–2216. IEEE Press (2005)Google Scholar
  5. 5.
    Floreano, D., Schoeni, N., Caprari, G., Blynel, J.: Evolutionary bits’n’spikes. In: Standish, R.K., Bedau, M.A., Abbass, H.A. (eds.) Artificial Life VIII: Proceedings of the Eighth International Conference on Artificial Life, pp. 335–344. MIT Press, Cambridge (2002)Google Scholar
  6. 6.
    Giacobini, M., Preuss, M., Tomassini, M.: Effects of Scale-Free and Small-World Topologies on Binary Coded Self-adaptive CEA. In: Gottlieb, J., Raidl, G.R. (eds.) EvoCOP 2006. LNCS, vol. 3906, pp. 86–98. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Haasdijk, E., Eiben, A.E., Karafotias, G.: On-line evolution of robot controllers by an encapsulated evolution strategy. In: Proceedings of the 2010 IEEE Congress on Evolutionary Computation, Barcelona, Spain, IEEE Computational Intelligence Society, IEEE Press (2010)Google Scholar
  8. 8.
    Jelasity, M., van Steen, M.: Large-scale newscast computing on the internet. Technical report, Vrije Universiteit Amsterdam (2002)Google Scholar
  9. 9.
    Laredo, J.L., Eiben, A.E., van Steen, M., Merelo, J.J.: Evag: a scalable peer-to-peer evolutionary algorithm. Genetic Programming and Evolvable Machines 11, 227–246 (2010)CrossRefGoogle Scholar
  10. 10.
    Nannen, V., Eiben, A.E.: Relevance estimation and value calibration of evolutionary algorithm parameters. In: Proc. of IJCAI 2007, pp. 975–980 (2007)Google Scholar
  11. 11.
    Nannen, V., Smit, S.K., Eiben, A.E.: Costs and Benefits of Tuning Parameters of Evolutionary Algorithms. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN X. LNCS, vol. 5199, pp. 528–538. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Nehmzow, U.: Physically embedded genetic algorithm learning in multi-robot scenarios: The pega algorithm. In: Prince, C.G., Demiris, Y., Marom, Y., Kozima, H., Balkenius, C. (eds.) Proceedings of The Second International Workshop on Epigenetic Robotics: Modeling Cognitive Development in Robotic Systems, Edinburgh, UK. Lund University Cognitive Studies, vol. 94. LUCS (August 2002)Google Scholar
  13. 13.
    Nelson, A.L., Barlow, G.J., Doitsidis, L.: Fitness functions in evolutionary robotics: A survey and analysis. Robotics and Autonomous Systems 57(4), 345–370 (2009)CrossRefGoogle Scholar
  14. 14.
    Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing Machines. MIT Press, Cambridge (2000)Google Scholar
  15. 15.
    Nordin, P., Banzhaf, W.: Genetic programming controlling a miniature robot. In: Working Notes for the AAAI Symposium on Genetic Programming, pp. 61–67. AAAI (1995)Google Scholar
  16. 16.
    Nordin, P., Banzhaf, W.: An on-line method to evolve behavior and to control a miniature robot in real time with genetic programming. Adaptive Behavior 5, 107–140 (1997)CrossRefGoogle Scholar
  17. 17.
    Schwefel, H.-P.: Numerical Optimization of Computer Models. John Wiley & Sons, Inc., New York (1981)zbMATHGoogle Scholar
  18. 18.
    Smit, S.K., Eiben, A.E.: Comparing parameter tuning methods for evolutionary algorithms. In: Proceedings of the Eleventh Conference on Congress on Evolutionary Computation, CEC 2009, Piscataway, NJ, USA, pp. 399–406. IEEE Press (2009)Google Scholar
  19. 19.
    Usui, Y., Arita, T.: Situated and embodied evolution in collective evolutionary robotics. In: Proceedings of the 8th International Symposium on Artificial Life and Robotics, pp. 212–215 (2003)Google Scholar
  20. 20.
    Walker, J.H., Garrett, S.M., Wilson, M.S.: The balance between initial training and lifelong adaptation in evolving robot controllers. IEEE Transactions on Systems, Man, and Cybernetics, Part B 36(2), 423–432 (2006)CrossRefGoogle Scholar
  21. 21.
    Watson, R.A., Ficici, S.G., Pollack, J.B.: Embodied evolution: Distributing an evolutionary algorithm in a population of robots. Robotics and Autonomous Systems 39(1), 1–18 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Robert-Jan Huijsman
    • 1
  • Evert Haasdijk
    • 1
  • A. E. Eiben
    • 1
  1. 1.Dept. of Computer ScienceVrije Universiteit AmsterdamThe Netherlands

Personalised recommendations