Advertisement

Visual Analysis of Population Scatterplots

  • Evelyne Lutton
  • Julie Foucquier
  • Nathalie Perrot
  • Jean Louchet
  • Jean-Daniel Fekete
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7401)

Abstract

We investigate how visual analytic tools can deal with the huge amount of data produced during the run of an evolutionary algorithm. We show, on toy examples and on two real life problems, how a multidimensional data visualisation tool like ScatterDice/GraphDice can be easily used for analysing raw output data produced along the run of an evolutionary algorithm. Visual interpretation of population data is not used very often by the EA community for experimental analysis. We show here that this approach may yield additional high level information that is hardly accessible through conventional computation.

Keywords

Optimisation Artificial Evolution Genetic algorithms Visual Analytics Experimental analysis of algorithms fitness landscape visualisation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bedau, M.A., Joshi, S., Lillie, B.: Visualizing waves of evolutionary activity of alleles. In: Proceedings of the 1999 GECCO Workshop on Evolutionary Computation Visualization, pp. 96–98 (1999)Google Scholar
  2. 2.
    Bezerianos, A., Chevalier, F., Dragicevic, P., Elmqvist, N., Fekete, J.-D.: Graphdice: A system for exploring multivariate social networks. Computer Graphics Forum (Proc. EuroVis 2010) 29(3), 863–872 (2010)CrossRefGoogle Scholar
  3. 3.
    Bullock, S., Bedau, M.A.: Exploring the dynamics of adaptation with evolutionary activity plots. Artif. Life 12, 193–197 (2006)CrossRefGoogle Scholar
  4. 4.
    Collet, P., Lutton, E., Schoenauer, M., Louchet, J.: Take it EASEA. In: Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J.J., Schwefel, H.-P. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 891–901. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Collins, T.D.: Visualizing evolutionary computation, pp. 95–116. Springer-Verlag New York, Inc., New York (2003)Google Scholar
  6. 6.
    Kerren, A.: Eavis: A visualization tool for evolutionary algorithms. In: Proceedings of the IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC 2005), pp. 299–301 (2005)Google Scholar
  7. 7.
    Daida, J., Hilss, A., Ward, D., Long, S.: Visualizing tree structures in genetic programming. Genetic Programming and Evolvable Machines 6, 79–110 (2005)CrossRefGoogle Scholar
  8. 8.
    Elmqvist, N., Dragicevic, P., Fekete, J.-D.: Rolling the dice: Multidimensional visual exploration using scatterplot matrix navigation. IEEE Transactions on Visualization and Computer Graphics (Proc. InfoVis 2008) 14(6), 1141–1148 (2008)Google Scholar
  9. 9.
    Foucquier, J., Gaucel, S., Surel, C., Anton, M., Garnier, C., Riaublanc, A., Baudrit, C., Perrot, N.: Modelling the formation of the fat droplets interface during homogenisation in order to describe texture. In: ICEF, 11th International Congress on Engineering and Food, Athens, Greece, May 22-26 (2011), http://www.icef11.org/
  10. 10.
    Hart, E., Ross, P.: Gavel - a new tool for genetic algorithm visualization. IEEE Trans. Evolutionary Computation 5(4), 335–348 (2001)CrossRefGoogle Scholar
  11. 11.
    Lutton, E., Fekete, J.-D.: Visual analytics of ea data. In: Genetic and Evolutionary Computation Conference, GECCO 2011, Dublin, Ireland, July 12-16 (2011)Google Scholar
  12. 12.
    Mach, Z., Zetakova, M.: Visualising genetic algorithms: A way through the Labyrinth of search space. In: Sincak, P., Vascak, J., Kvasnicka, V., Pospichal, J. (eds.) Intelligent Technologies - Theory and Applications, pp. 279–285. IOS Press, Amsterdam (2002)Google Scholar
  13. 13.
    Parmee, I.C., Abraham, J.A.R.: Supporting implicit learning via the visualisation of coga multi-objective data. In: CEC 2004, Congress on Evolutionary Computation, June 19-23, vol. 1, pp. 395–402 (2004)Google Scholar
  14. 14.
    Pohlheim, H.: Geatbx - genetic and evolutionary algorithm toolbox for matlab, http://www.geatbx.com/
  15. 15.
    Pohlheim, H.: Visualization of evolutionary algorithms - set of standard techniques and multidimensional visualization. In: GECCO 1999 - Proceedings of the Genetic and Evolutionary Computation Conference, San Francisco, CA, pp. 533–540 (1999)Google Scholar
  16. 16.
    Routen, T.W.: Techniques for the visualisation of genetic algorithms. In: The First IEEE Conference on Evolutionary Computation, vol. II, pp. 846–851 (1994)Google Scholar
  17. 17.
    Sapin, E., Louchet, J., Lutton, E.: The fly algorithm revisited: Adaptation to cmos image sensor. In: ICEC 2009, International Conference on Evolutionary Computation, Madeira, Portugal, October 5-7 (2009)Google Scholar
  18. 18.
    Shine, W., Eick, C.: Visualizing the evolution of genetic algorithm search processes. In: Proceedings of 1997 IEEE International Conference on Evolutionary Computation, pp. 367–372. IEEE Press (1997)Google Scholar
  19. 19.
    Spears, W.M.: An overview of multidimensional visualization techniques. In: Collins, T.D. (ed.) Evolutionary Computation Visualization Workshop, Orlando, Florida, USA (1999)Google Scholar
  20. 20.
    Walczak, Z.: Graph-Based Analysis of Evolutionary Algorithm. In: Klopotek, M., Wierzchon, S., Trojanowski, K. (eds.) Intelligent Information Processing and Web Mining. AISC, vol. 31, pp. 329–338. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Wu, A.S., De Jong, K.A., Burke, D.S., Grefenstette, J.J., Ramsey, C.L.: Visual analysis of evolutionary algorithms. In: Proceedings of the 1999 Conference on Evolutionary Computation (CEC 1999), pp. 1419–1425. IEEE Press (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Evelyne Lutton
    • 1
  • Julie Foucquier
    • 2
  • Nathalie Perrot
    • 2
  • Jean Louchet
    • 3
  • Jean-Daniel Fekete
    • 1
  1. 1.AVIZ Team, INRIA Saclay - Ile-de-FranceUniversité Paris-SudOrsay CedexFrance
  2. 2.UMR782 Génie et Microbiologie des Procédés AlimentairesAgroParisTech, INRAThiverval-GrignonFrance
  3. 3.ArteniaChâtillonFrance

Personalised recommendations