Advertisement

Probabilistic Model Checking of the PDGF Signaling Pathway

  • Qixia Yuan
  • Panuwat Trairatphisan
  • Jun Pang
  • Sjouke Mauw
  • Monique Wiesinger
  • Thomas Sauter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7625)

Abstract

In this paper, we apply the probabilistic symbolic model checker PRISM to the analysis of a biological system – the Platelet-Derived Growth Factor (PDGF) signaling pathway, demonstrating in detail how this pathway can be analyzed in PRISM. Moreover, we compare the results from verification and ODE simulation on the PDGF pathway and demonstrate by examples the influence of model structure, parameter values and pathway length on the two analysis methods.

Keywords

Model Check Steady State Probability Prism Model Probabilistic Model Check Large Granular Lymphocyte Leukemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yuan, Q., Pang, J., Mauw, S., Trairatphisan, P., Wiesinger, M., Sauter, T.: A study of the PDGF signaling pathway with PRISM. In: Proc. 3rd Workshop on Computational Models for Cell Processes. EPTCS, vol. 67, pp. 65–81 (2011)Google Scholar
  2. 2.
    Regev, A., Shapiro, E.: Cellular abstractions: Cells as computation. Nature 419, 343 (2002)CrossRefGoogle Scholar
  3. 3.
    Bonzanni, N., Anton Feenstra, K., Fokkink, W., Krepska, E.: What Can Formal Methods Bring to Systems Biology? In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 16–22. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Fisher, J., Henzinger, T.A.: Executable cell biology. Nature Biotechnology 25(11), 1239–1249 (2007)CrossRefGoogle Scholar
  5. 5.
    Sadot, A., Fisher, J., Barak, D., Admanit, Y., Stern, M.J., Jane Albert Hubbard, E., Harel, D.: Toward verified biological models. IEEE/ACM Transactions on Computational Biology Bioinformatics 5(2), 223–234 (2008)CrossRefGoogle Scholar
  6. 6.
    Fisher, J., Piterman, N.: The executable pathway to biological networks. Briefings in Functional Genomics and Proteomics 9(1), 79–92 (2010)Google Scholar
  7. 7.
    Kwiatkowska, M., Norman, G., Parker, D.: Stochastic Model Checking. In: Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 220–270. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Baier, C., Katoen, J.P.: Principles in Model Checking. MIT Press (2008)Google Scholar
  9. 9.
    Hart, S., Sharir, M., Pnueli, A.: Termination of probabilistic concurrent programs. ACM Transactions on Programming Languages and Systems 5(3), 356–380 (1983)zbMATHCrossRefGoogle Scholar
  10. 10.
    Kwiatkowska, M.Z., Norman, G., Parker, D.: Quantitative Verification Techniques for Biological Processes. In: Algorithmic Bioprocesses, pp. 391–409. Springer (2009)Google Scholar
  11. 11.
    Kwiatkowska, M.Z., Norman, G., Parker, D.: Probabilistic Model Checking for Systems Biology. In: Symbolic Systems Biology, pp. 31–59. Jones and Bartlett (2010)Google Scholar
  12. 12.
    Aldridge, B.B., Haller, G., Sorger, P.K., Lauffenburger, D.A.: Direct lyapunov exponent analysis enables parametric study of transient signalling governing cell behaviour. Systems Biology 153(6), 425–432 (2006)CrossRefGoogle Scholar
  13. 13.
    Yu, J., Ustach, C., Kim, H.R.: Platelet-derived growth factor signaling and human cancer. Journal of Biochemistry and Molecular Biology 36(1), 49–59 (2003)CrossRefGoogle Scholar
  14. 14.
    Golub, T.R., Barker, G.F., Lovett, M., Gilliland, D.G.: Fusion of PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell 77(2), 307–316 (1994)CrossRefGoogle Scholar
  15. 15.
    Anan, K., Morisaki, T., Katano, M., Ikubo, A., Kitsuki, H., Uchiyama, A., Kuroki, S., Tanaka, M., Torisu, M.: Vascular endothelial growth factor and platelet-derived growth factor are potential angiogenic and metastatic factors in human breast cancer. Surgery 119(3), 333–339 (1996)CrossRefGoogle Scholar
  16. 16.
    Cools, J., DeAngelo, D.J., Gotlib, J., Stover, E.H., Legare, R.D., Cortes, J., Kutok, J., Clark, J., Galinsky, I., Griffin, J.D., Cross, N.C., Tefferi, A., Malone, J., Alam, R., Schrier, S.L., Schmid, J., Rose, M., Vandenberghe, P., Verhoef, G., Boogaerts, M., Wlodarska, I., Kantarjian, H., Marynen, P., Coutre, S.E., Stone, R., Gilliland, D.G.: A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. The New England Journal of Medicine 348(13), 1201–1214 (2003)CrossRefGoogle Scholar
  17. 17.
    Miettinen, M., Lasota, J.: Gastrointestinal stromal tumors: Pathology and prognosis at different sites. Seminars in Diagnostic Pathology 23(2), 70–83 (2006)CrossRefGoogle Scholar
  18. 18.
    Calder, M., Vyshemirsky, V., Gilbert, D., Orton, R.: Analysis of Signalling Pathways Using Continuous Time Markov Chains. In: Priami, C., Plotkin, G. (eds.) Transactions on Computational Systems Biology VI. LNCS (LNBI), vol. 4220, pp. 44–67. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Kwiatkowska, M.Z., Norman, G., Parker, D.: Using probabilistic model checking in systems biology. SIGMETRICS Performance Evaluation Review 35, 14–21 (2008)CrossRefGoogle Scholar
  20. 20.
    Pronk, T., de Vink, E., Bosnacki, D., Breit, T.: Stochastic modeling of codon bias with PRISM. In: Proc. 3rd Workshop on Methods and Tools for Coordinating Concurrent, Distributed and Mobile Systems, Computer Science Department, University of Cyprus, Nicosia (2007)Google Scholar
  21. 21.
    Bošnački, D., Pronk, T.E., de Vink, E.P.: In Silico Modelling and Analysis of Ribosome Kinetics and aa-tRNA Competition. In: Priami, C., Back, R.-J., Petre, I. (eds.) Transactions on Computational Systems Biology XI. LNCS, vol. 5750, pp. 69–89. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  22. 22.
    Heath, J., Kwiatkowska, M., Norman, G., Parker, D., Tymchyshyn, O.: Probabilistic model checking of complex biological pathways. Theoretical Computer Science 319(3), 239–257 (2008)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Owens, N.D.L., Timmis, J., Greensted, A.J., Tyrrell, A.M.: Modelling the Tunability of Early T Cell Signalling Events. In: Bentley, P.J., Lee, D., Jung, S. (eds.) ICARIS 2008. LNCS, vol. 5132, pp. 12–23. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  24. 24.
    Jha, S.K., Clarke, E.M., Langmead, C.J., Legay, A., Platzer, A., Zuliani, P.: A Bayesian Approach to Model Checking Biological Systems. In: Degano, P., Gorrieri, R. (eds.) CMSB 2009. LNCS, vol. 5688, pp. 218–234. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  25. 25.
    Liò, P., Merelli, E., Paoletti, N.: Multiple verification in computational modeling of bone pathologies. In: Proc. 3rd International Workshop on Computational Models for Cell Processes. EPTCS, vol. 68, pp. 82–96 (2011)Google Scholar
  26. 26.
    Zhang, R., Shah, M.V., Yang, J., Nyland, S.B., Liu, X., Yun, J.K., Albert, R., Loughran, T.P.: Network model of survival signaling in large granular lymphocyte leukemia. Proceedings of the National Academy of Sciences of the United States of America 105(42), 16308–16313 (2008)CrossRefGoogle Scholar
  27. 27.
    Wang, C.C., Cirit, M., Haugh, J.M.: PI3K-dependent cross-talk interactions converge with Ras as quantifiable inputs integrated by Erk. Molecular Systems Biology 5, 246 (2009)CrossRefGoogle Scholar
  28. 28.
    Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model checking continuous time markov chains. ACM Transactions on Computational Logic 1(1), 162–170 (2000)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Baier, C., Hermanns, H., Haverkort, B.R., Katoen, J.P.: Model-checking algorithms for continuous-time markov chains. IEEE Transactions on Software Engineering 29(6), 524–541 (2003)CrossRefGoogle Scholar
  30. 30.
    Krauss, G.: Biochemistry of Signal Transduction and Regulation. Wiley-VCH, Weinheim (2008)Google Scholar
  31. 31.
    Bhalla, U.: Understanding complex signaling networks through models and metaphor. Progress in Biophysics & Molecular Biology 81(1), 45–65 (2003)CrossRefGoogle Scholar
  32. 32.
    Heldin, C.H., Westermarkt, B., Wasteson, A.: Platelet-derived growth factor. Molecular and Celluar Endocrinology 39(3), 169–187 (1985)CrossRefGoogle Scholar
  33. 33.
    Tallquist, M., Kazlauskas, A.: PDGF signaling in cells and mice. Cytokine & Growth Factor Review 15(4), 205–213 (2004)CrossRefGoogle Scholar
  34. 34.
    Yokote, K., Hellman, U., Ekman, S., Saito, Y., Roennstrand, L., Saito, Y., Heldin, C.H., Mori, S.: Identification of Tyr-762 in the platelet-derived growth factor alpha-receptor as the binding site for Crk proteins. Oncogene 16(10), 1229–1239 (1998)CrossRefGoogle Scholar
  35. 35.
    Gutiérrez-Uzquiza, A., Arechederra, M., Molina, I., Banos, R., Maia, V., Benito, M., Guerrero, C., Porras, A.: C3G down-regulates p38 MAPK activity in response to stress by Rap-1 independent mechanisms: involvement in cell death. Cellualar Signalling 22(3), 533–542 (2010)CrossRefGoogle Scholar
  36. 36.
    Valgeirsdóttir, S., Paukku, K., Silvennoinen, O., Heldin, C.H., Claesson-Welsh, L.: Activation of Stat5 by platelet-derived growth factor (PDGF) is dependent on phosphorylation sites in PDGF beta-receptor juxtamembrane and kinase insert domains. Oncogene 16(4), 505–515 (1998)CrossRefGoogle Scholar
  37. 37.
    Joazeiro, C.A., Wing, S.S., Huang, H., Leverson, J.D., Hunter, T., Liu, Y.C.: The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science 286(5438), 309–312 (1999)CrossRefGoogle Scholar
  38. 38.
    Hanahan, D., Weinberg, R.A.: Hallmarks of cancer: The next generation. Cell 144(5), 646–674 (2011)CrossRefGoogle Scholar
  39. 39.
    Yu, J., Gutkind, J.S., Mahadevan, D., Li, W., Meyers, K.A., Pierce, J.H., Heidaran, M.A.: Biological function of PDGF-induced PI-3 kinase activity: its role in alpha PDGF receptor-mediated mitogenic signaling. Journal of Cell Biology 127(2), 479–487 (1994)CrossRefGoogle Scholar
  40. 40.
    Bazenet, C.E., Gelderloos, J.A., Kazlauskas, A.: Phosphorylation of tyrosine 720 in the platelet-derived growth factor alpha receptor is required for binding of Grb2 and SHP-2 but not for activation of Ras or cell proliferation. Molecular and Cellular Biology 16(12), 6926–6936 (1996)Google Scholar
  41. 41.
    Reddi, A.L., Ying, G., Duan, L., Chen, G., Dimri, M., Douillard, P., Druker, B.J., Naramura, M., Band, V., Band, H.: Binding of Cbl to a phospholipase Cgamma1-docking site on platelet-derived growth factor receptor beta provides a dual mechanism of negative regulation. Journal of Biological Chemistry 282(40), 29336–293347 (2007)CrossRefGoogle Scholar
  42. 42.
    Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry 81(25), 2340–2361 (1977)CrossRefGoogle Scholar
  43. 43.
    Witt, J., Barisic, S., Schumann, E., Allgöwer, F., Sawodny, O., Sauter, T., Kulms, D.: Mechanism of PP2A-mediated IKKβ dephosphorylation: a systems biological approach. BMC Systems Biology 3, 71 (2009)CrossRefGoogle Scholar
  44. 44.
    Schmidt, H., Jirstrand, M.: Systems Biology Toolbox for MATLAB: a computational platform for research in systems biology. Bioinformatics 22(4), 514–515 (2006)CrossRefGoogle Scholar
  45. 45.
    Saltelli, A., Tarantola, S., Chan, K.P.S.: A quantitative model-independent method for global sensitivity analysis of model output. Technometrics 41(1), 39–56 (1999)CrossRefGoogle Scholar
  46. 46.
    Davies, S., Reddy, H., Caivano, M., Cohen, P.: Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochemical Journal 351(pt. 1), 95–105 (2000)CrossRefGoogle Scholar
  47. 47.
    Stewart, W.J.: Introduction to the Numerical Solution of Markov Chains. Princeton University Press (1994)Google Scholar
  48. 48.
    Tenenbaum, M., Pollard, H.: Ordinary Differential Equations: An Elementary Textbook for Students of Mathematics, Engineering, and the Science. Harper & Row (1985)Google Scholar
  49. 49.
    Kwiatkowska, M.Z., Norman, G., Parker, D., Tymchyshyn, O., Heath, J., Gaffney, E.: Simulation and verification for computational modelling of signalling pathways. In: Proc. 38th Winter Simulation Conference, pp. 1666–1674 (2006)Google Scholar
  50. 50.
    Han, T., Katoen, J.P., Mereacre, A.: Approximate parameter synthesis for probabilistic time-bounded reachability. In: Proc. 29 IEEE Real-Time Systems Symposium, pp. 173–182. IEEE Computer Society (2008)Google Scholar
  51. 51.
    Hahn, E.M., Hermanns, H., Zhang, L.: Probabilistic Reachability for Parametric Markov Models. In: Păsăreanu, C.S. (ed.) CAV 2011. LNCS, vol. 5578, pp. 88–106. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  52. 52.
    Andreychenko, A., Mikeev, L., Spieler, D., Wolf, V.: Parameter Identification for Markov Models of Biochemical Reactions. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 83–98. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Qixia Yuan
    • 1
    • 2
  • Panuwat Trairatphisan
    • 3
  • Jun Pang
    • 1
  • Sjouke Mauw
    • 1
  • Monique Wiesinger
    • 3
  • Thomas Sauter
    • 3
  1. 1.Computer Science and CommunicationsUniversity of LuxembourgLuxembourg
  2. 2.School of Computer Science and TechnologyShandong UniversityChina
  3. 3.Life Sciences Research UnitUniversity of LuxembourgLuxembourg

Personalised recommendations